Download Free Topics In Interstellar Matter Book in PDF and EPUB Free Download. You can read online Topics In Interstellar Matter and write the review.

Interstellar matter is one of the most active fields of research in present-day astronomy. Observational information spans the full electromagnetic spectrum from gamma rays through rocket-ultraviolet, optical, infrared and millimeter to long radio waves. Results of research in physical chemistry find as much application as mathematical methods. Interstellar matter plays a leading role in studies of our Galaxy and of external galaxies, and contributes increasingly to stellar astronomy. At the 16th General Assembly of the International Astronomical Union, held in August 1976 in Grenoble, France, the many new developments in this vast field were surveyed in a number of sessions of Commission 34 (Interstellar Matter), mostly jointly with other Commissions of the Union. Separate sessions were devoted to: The hot interstellar gas phase, Interaction of stars and interstellar medium, Interstellar molecules and dust, The large-scale distribution of interstellar matter in the Galaxy, and Interstellar matter in external galaxies. Twenty-four invited review papers were presented and discussed in these sessions. The quality and success of these topical reviews made it seem desirable to make them available to a wider audience. Professor Edith Muller, the new General Secretary of the IAU, enthusiastically supported the idea. Most importantly, the reviewers - who had originally been pro mised that an oral paper was the only requirement - agreed to prepare written versions. I am grateful to Mrs. Muller, to the authors, and to Reidel Publishing for their collaboration in the preparation of this book.
A journey through the otherworldly science behind Christopher Nolan’s award-winning film, Interstellar, from executive producer and Nobel Prize-winning physicist Kip Thorne. Interstellar, from acclaimed filmmaker Christopher Nolan, takes us on a fantastic voyage far beyond our solar system. Yet in The Science of Interstellar, Kip Thorne, the Nobel prize-winning physicist who assisted Nolan on the scientific aspects of Interstellar, shows us that the movie’s jaw-dropping events and stunning, never-before-attempted visuals are grounded in real science. Thorne shares his experiences working as the science adviser on the film and then moves on to the science itself. In chapters on wormholes, black holes, interstellar travel, and much more, Thorne’s scientific insights—many of them triggered during the actual scripting and shooting of Interstellar—describe the physical laws that govern our universe and the truly astounding phenomena that those laws make possible. Interstellar and all related characters and elements are trademarks of and © Warner Bros. Entertainment Inc. (s14).
This is a comprehensive and richly illustrated textbook on the astrophysics of the interstellar and intergalactic medium--the gas and dust, as well as the electromagnetic radiation, cosmic rays, and magnetic and gravitational fields, present between the stars in a galaxy and also between galaxies themselves. Topics include radiative processes across the electromagnetic spectrum; radiative transfer; ionization; heating and cooling; astrochemistry; interstellar dust; fluid dynamics, including ionization fronts and shock waves; cosmic rays; distribution and evolution of the interstellar medium; and star formation. While it is assumed that the reader has a background in undergraduate-level physics, including some prior exposure to atomic and molecular physics, statistical mechanics, and electromagnetism, the first six chapters of the book include a review of the basic physics that is used in later chapters. This graduate-level textbook includes references for further reading, and serves as an invaluable resource for working astrophysicists. Essential textbook on the physics of the interstellar and intergalactic medium Based on a course taught by the author for more than twenty years at Princeton University Covers radiative processes, fluid dynamics, cosmic rays, astrochemistry, interstellar dust, and more Discusses the physical state and distribution of the ionized, atomic, and molecular phases of the interstellar medium Reviews diagnostics using emission and absorption lines Features color illustrations and detailed reference materials in appendices Instructor's manual with problems and solutions (available only to teachers)
This book is based on a series of lectures for an Astrophysics of the Interstellar Medium (ISM) master’s degree in Astrophysics and Cosmology at Padova University. From the cold molecular phase in which stars and planetary systems form, to the very hot coronal gas that surrounds galaxies and galaxy clusters, the ISM is everywhere. Studying its properties is vital for the exploration of virtually any field in astronomy and cosmology. These notes give the student a coherent and accurate mathematical and physical approach, with continuous references to the real ISM in galaxies. The book is divided into three parts. Part One introduces the equations of fluid dynamics for a system at rest and acoustic waves, and then explores the real ISM through the role of thermal conduction and viscosity, concluding with a discussion of shock waves and turbulence. In Part Two, the electromagnetic field is switched on and its role in modulating shock waves and contrasting gravity is studied. Part Three describes dust and its properties, followed by the main stellar sources of energy. The last two chapters respectively address the various components of the ISM and molecular clouds and star formation.
A comprehensive yet accessible textbook introducing the nature of the rarefied matter that pervades the space between stars.
Describing interstellar matter in our galaxy in all of its various forms, this book also considers the physical and chemical processes that are occurring within this matter. The first seven chapters present the various components making up the interstellar matter and detail the ways that we are able to study them. The following seven chapters are devoted to the physical, chemical and dynamical processes that control the behaviour of interstellar matter. These include the instabilities and cloud collapse processes that lead to the formation of stars. The last chapter summarizes the transformations that can occur between the different phases of the interstellar medium. Emphasizing methods over results, The Interstellar Medium is written for graduate students, for young astronomers, and also for any researchers who have developed an interest in the interstellar medium.
The book leads the advanced undergraduate through the wide range of disciplines related to an understanding of the interstellar medium and is suitable for any student studying either physics or astrophysics. The study of the interstellar medium incorporates a large range of physical More...processes on both large and small scales all of which are covered in this text. Together with the inclusion of simple models and problems at the end of each chapter this text provides a comprehensive overview and grounding in the study of the interstellar medium.
This concise textbook covers all aspects of the interstellar and intergalactic medium, for graduate students and advanced undergraduates.
In the interstellar medium - the space between the stars in galaxies - new stars are born from material that is replenished by the debris ejected by stars when they die. This book is a comprehensive manual for studying the collisional and radiative processes observed in the interstellar medium. This second edition has been thoroughly updated and extended to cover related topics in radiation theory. It considers the chemistry of the interstellar medium both at the present epoch and in the early Universe, and discusses the physics and chemistry of shock waves. The methods of calculation of the rates of collisional excitation of interstellar molecules and atoms are explained, emphasising the quantum mechanical method. This book will be ideal for researchers involved in the interstellar medium and star formation, and physical chemists specialising in collision theory or in the measurement of the rates of collision processes.
This book takes a reader on a tour of astronomical phenomena: from the vastness of the interstellar medium, to the formation and evolution of stars and planetary systems, through to white dwarfs, neutron stars, and black holes, the final objects of the stellar graveyard. At its heart, this book is a journey through the evolutionary history of the birth, life, and death of stars, but detours are also made to other related interesting topics. This highly accessible story of the observed contents of our Galaxy includes intuitive explanations, informative diagrams, and basic equations, as needed. It is an ideal guide for undergraduates with some physics and mathematics background who are studying astronomy and astrophysics. It is also accessible to interested laypeople, thanks to its limited equations. Key features: Includes coverage of some of the latest exciting research from the field, including star formation, exoplanets, and black holes Can be utilised as a stand-alone textbook for a one-term course or as a supplementary textbook for a more comprehensive course on astronomy and astrophysics Authored by a team respected for research, education, and outreach Shantanu Basu is an astrophysicist and a professor at The University of Western Ontario, Canada. He is known for research contributions on the formation of gravitationally-collapsed objects in the universe: stars, planets, brown dwarfs, and supermassive black holes. He is one of the originators of the migrating embryo scenario of episodic accretion onto young stars. He has been recognized for his teaching excellence and his contributions to the astronomical community include organizing many conferences and training schools. Pranav Sharma is an astronomer and science historian known for his work on the history of the Indian Space Program. He has curated the Space Museum at the B. M. Birla Science Centre (Hyderabad, India). He is in-charge of the history of Indo-French scientific partnership project supported by the Embassy of France in India. He is a national-award-winning science communicator and has extensively worked on the popularization of astronomy education in India.