Download Free Topics In Gallai Ramsey Theory Book in PDF and EPUB Free Download. You can read online Topics In Gallai Ramsey Theory and write the review.

This book explores topics in Gallai-Ramsey theory, which looks into whether rainbow colored subgraphs or monochromatic subgraphs exist in a sufficiently large edge-colored complete graphs. A comprehensive survey of all known results with complete references is provided for common proof methods. Fundamental definitions and preliminary results with illustrations guide readers to comprehend recent innovations. Complete proofs and influential results are discussed with numerous open problems and conjectures. Researchers and students with an interest in edge-coloring, Ramsey Theory, and colored subgraphs will find this book a valuable guide for entering Gallai-Ramsey Theory.
This text is a comprehensive survey of the literature surrounding star-critical Ramsey numbers. First defined by Jonelle Hook in her 2010 dissertation, these numbers aim to measure the sharpness of the corresponding Ramsey numbers by determining the minimum number of edges needed to be added to a critical graph for the Ramsey property to hold. Despite being in its infancy, the topic has gained significant attention among Ramsey theorists. This work provides researchers and students with a resource for studying known results and their complete proofs. It covers typical results, including multicolor star-critical Ramsey numbers for complete graphs, trees, cycles, wheels, and n-good graphs, among others. The proofs are streamlined and, in some cases, simplified, with a few new results included. The book also explores the connection between star-critical Ramsey numbers and deleted edge numbers, which focus on destroying the Ramsey property by removing edges. The book concludes with open problems and conjectures for researchers to consider, making it a valuable resource for those studying the field of star-critical Ramsey numbers.
With Chromatic Graph Theory, Second Edition, the authors present various fundamentals of graph theory that lie outside of graph colorings, including basic terminology and results, trees and connectivity, Eulerian and Hamiltonian graphs, matchings and factorizations, and graph embeddings. Readers will see that the authors accomplished the primary goal of this textbook, which is to introduce graph theory with a coloring theme and to look at graph colorings in various ways. The textbook also covers vertex colorings and bounds for the chromatic number, vertex colorings of graphs embedded on surfaces, and a variety of restricted vertex colorings. The authors also describe edge colorings, monochromatic and rainbow edge colorings, complete vertex colorings, several distinguishing vertex and edge colorings. Features of the Second Edition: The book can be used for a first course in graph theory as well as a graduate course The primary topic in the book is graph coloring The book begins with an introduction to graph theory so assumes no previous course The authors are the most widely-published team on graph theory Many new examples and exercises enhance the new edition
This book provides an exciting history of the discovery of Ramsey Theory, and contains new research along with rare photographs of the mathematicians who developed this theory, including Paul Erdös, B.L. van der Waerden, and Henry Baudet.
Ramsey theory is a dynamic area of combinatorics that has various applications in analysis, ergodic theory, logic, number theory, probability theory, theoretical computer science, and topological dynamics. This book is devoted to one of the most important areas of Ramsey theory—the Ramsey theory of product spaces. It is a culmination of a series of recent breakthroughs by the two authors and their students who were able to lift this theory to the infinite-dimensional case. The book presents many major results and methods in the area, such as Szemerédi's regularity method, the hypergraph removal lemma, and the density Hales–Jewett theorem. This book addresses researchers in combinatorics but also working mathematicians and advanced graduate students who are interested in Ramsey theory. The prerequisites for reading this book are rather minimal: it only requires familiarity, at the graduate level, with probability theory and real analysis. Some familiarity with the basics of Ramsey theory would be beneficial, though not necessary.
With Chromatic Graph Theory, Second Edition, the authors present various fundamentals of graph theory that lie outside of graph colorings, including basic terminology and results, trees and connectivity, Eulerian and Hamiltonian graphs, matchings and factorizations, and graph embeddings. Readers will see that the authors accomplished the primary goal of this textbook, which is to introduce graph theory with a coloring theme and to look at graph colorings in various ways. The textbook also covers vertex colorings and bounds for the chromatic number, vertex colorings of graphs embedded on surfaces, and a variety of restricted vertex colorings. The authors also describe edge colorings, monochromatic and rainbow edge colorings, complete vertex colorings, several distinguishing vertex and edge colorings. Features of the Second Edition: The book can be used for a first course in graph theory as well as a graduate course The primary topic in the book is graph coloring The book begins with an introduction to graph theory so assumes no previous course The authors are the most widely-published team on graph theory Many new examples and exercises enhance the new edition
These notes were first used in an introductory course team taught by the authors at Appalachian State University to advanced undergraduates and beginning graduates. The text was written with four pedagogical goals in mind: offer a variety of topics in one course, get to the main themes and tools as efficiently as possible, show the relationships between the different topics, and include recent results to convince students that mathematics is a living discipline.
Chromatic graph theory is a thriving area that uses various ideas of 'colouring' (of vertices, edges, and so on) to explore aspects of graph theory. It has links with other areas of mathematics, including topology, algebra and geometry, and is increasingly used in such areas as computer networks, where colouring algorithms form an important feature. While other books cover portions of the material, no other title has such a wide scope as this one, in which acknowledged international experts in the field provide a broad survey of the subject. All fifteen chapters have been carefully edited, with uniform notation and terminology applied throughout. Bjarne Toft (Odense, Denmark), widely recognized for his substantial contributions to the area, acted as academic consultant. The book serves as a valuable reference for researchers and graduate students in graph theory and combinatorics and as a useful introduction to the topic for mathematicians in related fields.
The contributions in this volume are divided into three sections: theoretical, new models and algorithmic. The first section focuses on properties of the standard domination number &ggr;(G), the second section is concerned with new variations on the domination theme, and the third is primarily concerned with finding classes of graphs for which the domination number (and several other domination-related parameters) can be computed in polynomial time.
Algorithmic graph theory has been expanding at an extremely rapid rate since the middle of the twentieth century, in parallel with the growth of computer science and the accompanying utilization of computers, where efficient algorithms have been a prime goal. This book presents material on developments on graph algorithms and related concepts that will be of value to both mathematicians and computer scientists, at a level suitable for graduate students, researchers and instructors. The fifteen expository chapters, written by acknowledged international experts on their subjects, focus on the application of algorithms to solve particular problems. All chapters were carefully edited to enhance readability and standardize the chapter structure as well as the terminology and notation. The editors provide basic background material in graph theory, and a chapter written by the book's Academic Consultant, Martin Charles Golumbic (University of Haifa, Israel), provides background material on algorithms as connected with graph theory.