Download Free Topics In Factorization Of Abelian Groups Book in PDF and EPUB Free Download. You can read online Topics In Factorization Of Abelian Groups and write the review.

The main objective of this book is to give a systematic exposition of the main results and techniques of the factorization theory of abelian groups. The necessary background materials are presented along with some of the most important applications in geometry, combinatorics, coding theory, and number theory. A large part of the text is accessible to students, requiring only basic knowledge in group theory and algebra. Helpful exercises are provided in every chapter.
Decomposing an abelian group into a direct sum of its subsets leads to results that can be applied to a variety of areas, such as number theory, geometry of tilings, coding theory, cryptography, graph theory, and Fourier analysis. Focusing mainly on cyclic groups, Factoring Groups into Subsets explores the factorization theory of abelian groups. Th
There is no other book with such a wide scope of both areas of algebraic graph theory.
This book is dedicated to the memory of Israel Gohberg (1928–2009) – one of the great mathematicians of our time – who inspired innumerable fellow mathematicians and directed many students. The volume reflects the wide spectrum of Gohberg’s mathematical interests. It consists of more than 25 invited and peer-reviewed original research papers written by his former students, co-authors and friends. Included are contributions to single and multivariable operator theory, commutative and non-commutative Banach algebra theory, the theory of matrix polynomials and analytic vector-valued functions, several variable complex function theory, and the theory of structured matrices and operators. Also treated are canonical differential systems, interpolation, completion and extension problems, numerical linear algebra and mathematical systems theory.
This volume is dedicated to Professor Stefan Samko on the occasion of his seventieth birthday. The contributions display the range of his scientific interests in harmonic analysis and operator theory. Particular attention is paid to fractional integrals and derivatives, singular, hypersingular and potential operators in variable exponent spaces, pseudodifferential operators in various modern function and distribution spaces, as well as related applications, to mention but a few. Most contributions were firstly presented in two conferences at Lisbon and Aveiro, Portugal, in June‒July 2011.
This book contains select papers on rings, monoids and module theory which are presented at the 3rd International Conference on Mathematics and Statistics (AUS-ICMS 2020) held at the American University of Sharjah, United Arab Emirates, from 6–9 February 2020. This conference was held in honour of the work of the distinguished algebraist Daniel D. Anderson. Many participants and colleagues from around the world felt it appropriate to acknowledge his broad and sweeping contributions to research in algebra by writing an edited volume in his honor. The topics covered are, inevitably, a cross-section of the vast expansion of modern algebra. The book is divided into two sections—surveys and recent research developments—with each section hopefully offering symbiotic utility to the reader. The book contains a balanced mix of survey papers, which will enable expert and non-expert alike to get a good overview of developments across a range of areas of algebra. The book is expected to be of interest to both beginning graduate students and experienced researchers.
Rings, Modules, Algebras, and Abelian Groups summarizes the proceedings of a recent algebraic conference held at Venice International University in Italy. Surveying the most influential developments in the field, this reference reviews the latest research on Abelian groups, algebras and their representations, module and ring theory, and topological
Basic Algebra and Advanced Algebra systematically develop concepts and tools in algebra that are vital to every mathematician, whether pure or applied, aspiring or established. Together, the two books give the reader a global view of algebra and its role in mathematics as a whole. The presentation includes blocks of problems that introduce additional topics and applications to science and engineering to guide further study. Many examples and hundreds of problems are included, along with a separate 90-page section giving hints or complete solutions for most of the problems.
Professor Peter Hilton is one of the best known mathematicians of his generation. He has published almost 300 books and papers on various aspects of topology and algebra. The present volume is to celebrate the occasion of his sixtieth birthday. It begins with a bibliography of his work, followed by reviews of his contributions to topology and algebra. These are followed by eleven research papers concerned with various topics of current interest in algebra and topology. The articles are contributed by some of the many mathematicians with whom he has worked at one time or another. This book will be of interest to both topologists and algebraists, particularly those concerned with homotopy theory.