Download Free Top Quark Pair Production Cross Section At Tevatron Book in PDF and EPUB Free Download. You can read online Top Quark Pair Production Cross Section At Tevatron and write the review.

An overview of the recent measurements of the top antitop quark pair production cross section in proton antiproton collisions at (square root)s = 1.96 TeV in lepton + jets and dilepton final states is presented. These measurements are based on 1-2.8 fb−1 of data collected with the D0 and CDF experiments at the Fermilab Tevatron collider. The cross section is measured with a precision close to 8 % and found to be compatible with the standard model prediction. Interpretations of the cross-section measurements for charge higgs search and for top quark mass measurement are also discussed.
The top quark, discovered in 1995 by the CDF and D0 collaborations at the Tevatron proton antiproton collider at Fermilab, has undergone intense studies in the last 20 years. Currently, CDF and D0 converge on their measurements of top-antitop quark production cross sections using the full Tevatron data sample. In these proceedings, the latest results on inclusive and differential measurements of top-antitop quark production cross sections at the Tevatron are reported.
The top quark has been discovered by CDF and D0 experiments in 1995 at the proton-antiproton collider Tevatron. The amount of data recorded by both experiments makes it possible to accurately study the properties of this quark: its mass is now known to better than 1% accuracy. This thesis describes the measurement of the top pair cross section in the electron muon channel with 4, 3 fb−1 recorded data between 2006 and 2009 by the D0 experiment. Since the final state included a muon, improvements of some aspects of its identification have been performed : a study of the contamination of the cosmic muons and a study of the quality of the muon tracks. The cross section measurement is in good agreement with the theoretical calculations and the other experimental measurements. This measurement has been used to extract a value for the top quark mass. This method allows for the extraction of a better defined top mass than direct measurements as it depends less on Monte Carlo simulations. The uncertainty on this extracted mass, dominated by the experimental one, is however larger than for direct measurements. In order to decrease this uncertainty, the ratio of the Z boson and the top pair production cross sections has been studied to look for some possible theoretical correlations. At the Tevatron, the two cross sections are not theoretically correlated: no decrease of the uncertainty on the extracted top mass is therefore possible.
An overview of the preliminary results of the top quark pair production cross section measurements at a center-of-mass energy of 1.96 TeV carried out by the CDF and D0 collaborations is presented. The data samples used for the analyses are collected in the current Tevatron run and correspond to an integrated luminosity from 360 pb{sup -1} up to 760 pb{sup -1}.
The Tevatron proton-antiproton collider at Fermilab with its center of mass energy of 1.96 TeV is currently the only source for the production of top quarks. This report reflects the current status of measurements of the top quark pair production cross section and properties performed by the CDF and D0 Collaborations. Utilizing datasets of up to two fb−1, these measurements allow unprecedented precision in probing the validity of the Standard Model.
Before any kind of new physics discovery could be made at the LHC, a precise understanding and measurement of the Standard Model of particle physics' processes was necessary. The book provides an introduction to top quark production in the context of the Standard Model and presents two such precise measurements of the production of top quark pairs in proton-proton collisions at a center-of-mass energy of 7 TeV that were observed with the ATLAS Experiment at the LHC. The presented measurements focus on events with one charged lepton, missing transverse energy and jets. Using novel and advanced analysis techniques as well as a good understanding of the detector, they constitute the most precise measurements of the quantity at that time.
We present the measurement of the top pair production cross-section at Tevatron in p-pbar collisions at 1.96 TeV. We also compare selected kinematical distributions with the predictions of the Standard Model. In the dilepton mode, we select events with two charged leptons, high missing transverse energy and at least 2 jets. In the lepton+jets mode, we select events with one charged lepton, high missing transverse energy and at least 3 jets. We present several complementary measurements using kinematic discrimination and/or b-tagging. In the all-hadronic channel, we select events with {ge}6 jets and {le}8 jets. We present a measurement using an optimized kinematic selection and events with one or more displaced secondary vertices. We also report on the search for non-standard model resonance states in the invariant mass spectrum of top pairs in lepton+jets events. We present two complementary measurements, one adopts an event reconstruction technique that uses matrix element information to increase the sensitivity for discovery, the other performs a constrained kinematic fit and requires b-tagging.
This thesis presents the first experimental calibration of the top-quark Monte-Carlo mass. It also provides the top-quark mass-independent and most precise top-quark pair production cross-section measurement to date. The most precise measurements of the top-quark mass obtain the top-quark mass parameter (Monte-Carlo mass) used in simulations, which are partially based on heuristic models. Its interpretation in terms of mass parameters used in theoretical calculations, e.g. a running or a pole mass, has been a long-standing open problem with far-reaching implications beyond particle physics, even affecting conclusions on the stability of the vacuum state of our universe. In this thesis, this problem is solved experimentally in three steps using data obtained with the compact muon solenoid (CMS) detector. The most precise top-quark pair production cross-section measurements to date are performed. The Monte-Carlo mass is determined and a new method for extracting the top-quark mass from theoretical calculations is presented. Lastly, the top-quark production cross-sections are obtained – for the first time – without residual dependence on the top-quark mass, are interpreted using theoretical calculations to determine the top-quark running- and pole mass with unprecedented precision, and are fully consistently compared with the simultaneously obtained top-quark Monte-Carlo mass.