Download Free Tools For Green Chemistry Volume 10 Book in PDF and EPUB Free Download. You can read online Tools For Green Chemistry Volume 10 and write the review.

Volume 10 in the Handbook of Green Chemistry series provides useful and practical tools, databases, and laboratory approaches to support chemists working in both academia and industry in achieving their green chemistry goals. Among many other helpful techniques covered, the authors offer prediction software, life cycle assessment methodology, and screening tools.
Volume 10 in the Handbook of Green Chemistry series provides useful and practical tools, databases, and laboratory approaches to support chemists working in both academia and industry in achieving their green chemistry goals. Among many other helpful techniques covered, the authors offer prediction software, life cycle assessment methodology, and screening tools.
The book explains the importance of chemistry in solving environmental issues by highlighting the role green chemistry plays in making the environment clean and green by covering a wide array of topics ranging from sustainable development, microwave chemical reaction, renewable feedstocks, microbial bioremediation, and other topics that, when implemented, will advance environmental improvement. Green Chemistry for Environmental Remediation provides insight on how educators from around the world have incorporated green chemistry into their classrooms and how the principles of green chemistry can be integrated into the curriculum. The volume presents high-quality research papers as well as in-depth review articles from eminent professors, scientists, chemists, and engineers both from educational institutions and from industry. It introduces a new emerging green face of multidimensional environmental chemistry. Each chapter brings forward the latest literature and research being done in the related area. The 23 chapters are divided into 4 sections: Green chemistry and societal sustainability including teaching and education of green chemistry Green lab technologies and alternative solutions to conventional laboratory techniques Green bio-energy sources as green technology frontiers Green applications and solutions for remediation Green Chemistry for Environmental Remediation is an important resource for academic researchers, students, faculty, industrial chemists, chemical engineers, environmentalists, and anyone interested in environmental policy safeguarding the environment. Relevant industries include those in clean technology, renewable energy, biotechnology, pharmaceutical, and chemicals. Another goal of the book is to promote and generate awareness about the relationship of green chemistry with the environment amongst the younger generation who might wish to pursue a career in green chemistry.
Promotes a green approach to chemistry and chemical engineering for a sustainable planet With this text as their guide, students will gain a new outlook on chemistry and engineering. The text fully covers introductory concepts in general, organic, inorganic, and analytical chemistry as well as biochemistry. At the same time, it integrates such concepts as greenhouse gas potential, alternative and renewable energy, solvent selection and recovery, and ecotoxicity. As a result, students learn how to design chemical products and processes that are sustainable and environmentally friendly. Green Chemistry and Engineering presents the green approach as an essential tool for tackling problems in chemistry. A novel feature of the text is its integration of introductory engineering concepts, making it easier for students to move from fundamental science to applications. Throughout this text, the authors integrate several features to help students understand and apply basic concepts in general chemistry as well as green chemistry, including: Comparisons of the environmental impact of traditional chemistry approaches with green chemistry approaches Analyses of chemical processes in the context of life-cycle principles, demonstrating how chemistry fits within the complex supply chain Applications of green chemistry that are relevant to students' lives and professional aspirations Examples of successful green chemistry endeavors, including Presidential Green Chemistry Challenge winners Case studies that encourage students to use their critical thinking skills to devise green chemistry solutions Upon completing this text, students will come to understand that chemistry is not antithetical to sustainability, but rather, with the application of green principles, chemistry is the means to a sustainable planet.
This first book to focus on catalytic processes from the viewpoint of green chemistry presents every important aspect: · Numerous catalytic reductions and oxidations methods · Solid-acid and solid-base catalysis · C-C bond formation reactions · Biocatalysis · Asymmetric catalysis · Novel reaction media like e.g. ionic liquids, supercritical CO2 · Renewable raw materials Written by Roger A. Sheldon -- without doubt one of the leaders in the field with much experience in academia and industry -- and his co-workers, the result is a unified whole, an indispensable source for every scientist looking to improve catalytic reactions, whether in the college or company lab.
"This lab text describes the tools and strategies of green chemistry, and the lab experiments that allow investigation of organic chemistry concepts and techniques in a greener laboratory setting. Students acquire the tools to assess the health and environmental impacts of chemical processes and the strategies to improve develop new processes that are less harmful to human health and the environment. The curriculum introduces a number of state-of-the-art experiments and reduces reliance on expensive environmental controls, such as fume hoods."--Provided by publisher.
Quantifying the environmental impact of chemical technologies and products, and comparing alternative products and technologies in terms of their "greenness" is a challenging task. In order to characterise various aspects of a complex phenomenon, a number of different indicators are selected into a metric. This book outlines fundamental developments in chemistry and chemical technology that have led to the development of green chemistry, green chemical technology, and sustainable chemical technology concepts, and provide a foundation for the development of the corresponding metrics. It includes different approaches to metrics, and case study examples of their applications, and problems in practice. Green Chemistry Metrics is aimed at graduate students and researchers, practitioners and environmental managers in industry, metrics developers, and governmental agencies and NGOs in the area of environmental protection and sustainability. The main focus will be on chemical processes, however the book will be relevant to other industry sectors such as energy, electronics, healthcare, food and consumer products.
The past, present, and future of green chemistry and green engineering From college campuses to corporations, the past decade witnessed a rapidly growing interest in understanding sustainable chemistry and engineering. Green Chemistry and Engineering: A Practical Design Approach integrates the two disciplines into a single study tool for students and a practical guide for working chemists and engineers. In Green Chemistry and Engineering, the authors—each highly experienced in implementing green chemistry and engineering programs in industrial settings—provide the bottom-line thinking required to not only bring sustainable chemistry and engineering closer together, but to also move business towards more sustainable practices and products. Detailing an integrated, systems-oriented approach that bridges both chemical syntheses and manufacturing processes, this invaluable reference covers: Green chemistry and green engineering in the movement towards sustainability Designing greener, safer chemical synthesis Designing greener, safer chemical manufacturing processes Looking beyond current processes to a lifecycle thinking perspective Trends in chemical processing that may lead to more sustainable practices The authors also provide real-world examples and exercises to promote further thought and discussion. The EPA defines green chemistry as the design of chemical products and processes that reduce or eliminate the use or generation of hazardous substances. Green engineering is described as the design, commercialization, and use of products and processes that are feasible and economical while minimizing both the generation of pollution at the source and the risk to human health and the environment. While there is no shortage of books on either discipline, Green Chemistry and Engineering is the first to truly integrate the two.
This book aims to stimulate and promote the wide-ranging aspects of green chemistry and its major role in ensuring sustainable development. The book covers the following areas: green chemistry; green reagents and atom economy; safeguarding the atmosphere; industrial green catalysis; alternative reaction conditions; biocatalysis and green chemistry. This book is based on the third edition of the Collection of Lectures of the Summer Schools on Green Chemistry held in Venice, Italy in the summers of 1998-2003 (sponsored by the European Commission, TMR and Improving Programmes and carried out by the Consortzio Interuniversitario La Chemica per l'Ambiente).
Sustainable development is now accepted as a necessary goal for achieving societal, economic and environmental objectives. Within this chemistry has a vital role to play. The chemical industry is successful but traditionally success has come at a heavy cost to the environment. The challenge for chemists and others is to develop new products, processes and services that achieve societal, economic and environmental benefits. This requires an approach that reduces the materials and energy intensity of chemical processes and products; minimises the dispersion of harmful chemicals in the environment; maximises the use of renewable resources and extends the durability and recyclability of products in a way that increases industrial competitiveness as well as improve its tarnished image.