Download Free Tokamak Reactors For Breakeven Book in PDF and EPUB Free Download. You can read online Tokamak Reactors For Breakeven and write the review.

Tokamak Reactors for Breakeven: A Critical Study of the Near-Term Fusion Reactor Program presents all possible aspects concerning the Tokamak line of research. This book examines the many significant implications of fusion research programs. Organized into five parts encompassing 29 chapters, this book begins with an overview of the mechanisms of anomalous loss in existing machines. This text then examines the environmental problems related to the use of large quantities of tritium. Other chapters consider the technology of superconducting Tokamak magnets, which provides challenging tasks both for specific developments in laboratories and hardware construction in industry. This book discusses as well the established program goal of the fusion program to develop and demonstrate pure fusion central electric power stations for commercial applications. The final chapter deals with the two types of reactors, namely, the liquid metal fast breeder reactors (LMFBR) and the high temperature reactors (HTR). This book is a valuable resource for scientists, engineers, and technologists.
This book contains the papers presented at the Course on "Tokamak Startup - Problems and Scenarios Related to the Transient Phases of a Thermonuclear Fusion Reactor" which was held in Erice, July 14-20, 1985. The fact that the critical startup and transient phases of a tokamak reactor are now the specific subject of a comprehensive international gathering of fusion specialists seems indicative of the substantial pro gress made in recent years towards attaining controlled ignition of a nuclear fusion fuel, i.e. towards demonstrating the scientific feasibili ty of controlled thermonuclear fusion. In fact, the steady-state burning phase has attracted so far most of the attention of fusion physicists and engineers, as it is conceptually more rewarding, and theoretically easier to handle. However, as for many large engineering systems, - nuclear fis- ... ':1' " . 10 ' ... Entrance to San Rocco's lecturing hall v sion power plants, or aerospace crafts, for example - the major issues of design and operation lie often in the startup, shutdown and power tran sieQt phases, rather than at the full load, or at cruising regimes. In ehoosing the contributions to this 7th Course of Prof. B.
We perform extensive analysis on the physics of L-mode tokamak fusion reactors to identify (1) a favorable parameter space for a large scale steady-state reactor and (2) an operating point for a minimum scale steady-state reactor. The identification of the large scale parameter space is part of the 2008 MIT Nuclear Systems Design Project, which also includes sustainability and economic optimizations to identify a plausible operating point for a large scale (a 14 m major radius) hydrogen production reactor dubbed HYPERION. Due to the potentially prohibitive capital cost (a $50 billion) and exorbitant thermal power (a 35 GWth) of HYPERION, we identify a conservative estimate for the minimum scale of a similar steady-state L-mode reactor of approximately 7.5 meters, half the size of HYPERION and only 20% larger than ITER. This minimum scale reactor would require an on-coil magnetic field of a 16 T and a blanket power density of ~ 5 MW/m 2 . It would produce 7 GWth of power with a power gain of 30, and it would operate far from all stability and confinement limits. To confirm the viability of this operating point, we perform various 1-D calculations. The crucial advantage of a steady-state (or fully non-inductive) reactor is that it is not limited by flux swing and can operate continuously, recharging its solenoid during operation. The crucial advantages of L-mode are that it avoids instabilities associated with edge localized modes (ELMs) and that it allows volumetric heating in the mantle due to the absence of a pedestal. Steady-state L-mode tokamak reactors could be the future of controlled fusion research and even play an important role in meeting the world's clean energy needs.