Download Free Tissue Engineering Of The Peripheral Nerve Book in PDF and EPUB Free Download. You can read online Tissue Engineering Of The Peripheral Nerve and write the review.

This updatable book provides an accessible informative overview of the current state of the art in nerve repair research.The introduction includes history of nerve repair research and establishes key concepts and terminology and will be followed by sections that represent the main areas of interest in the field: (1) Biomaterials, (2) Therapeutic Cells, (3) Drug, Gene and Extracellular Vesicle Therapies, (4) Research Models and (5) Clinical Translation. Each section will contain 3 - 6 chapters, capturing the full breadth of relevant technology. Bringing together diverse disciplines under one overarching theme echoes the multidisciplinary approach that underpins modern tissue engineering and regenerative medicine. Each chapter will be written in an accessible manner that will facilitate interest and understanding, providing a comprehensive single reference source. The updatable nature of the work will ensure that it can evolve to accommodate future changes and new technologies. The main readership for this work will be researchers and clinicians based in academic, industrial and healthcare settings all over the world.
This issue of International Review of Neurobiology brings together cutting-edge research on tissue engineering of the peripheral nerve. It reviews current knowledge and understanding, provides a starting point for researchers and practitioners entering the field, and builds a platform for further research and discovery. This volume of International Review of Neurobiology brings together cutting-edge research on tissue engineering of the peripheral nerve It reviews current knowledge and understanding, provides a starting point for researchers and practitioners entering the field, and builds a platform for further research and discovery
This issue of International Review of Neurobiology brings together cutting-edge research on tissue engineering of the peripheral nerve. It reviews current knowledge and understanding, provides a starting point for researchers and practitioners entering the field, and builds a platform for further research and discovery. This volume covers the cutting-edge research on tissue engineering of the peripheral nerve
This updatable book provides an accessible informative overview of the current state of the art in nerve repair research.The introduction includes history of nerve repair research and establishes key concepts and terminology and will be followed by sections that represent the main areas of interest in the field: (1) Biomaterials, (2) Therapeutic Cells, (3) Drug, Gene and Extracellular Vesicle Therapies, (4) Research Models and (5) Clinical Translation. Each section will contain 3 - 6 chapters, capturing the full breadth of relevant technology. Bringing together diverse disciplines under one overarching theme echoes the multidisciplinary approach that underpins modern tissue engineering and regenerative medicine. Each chapter will be written in an accessible manner that will facilitate interest and understanding, providing a comprehensive single reference source. The updatable nature of the work will ensure that it can evolve to accommodate future changes and new technologies. The main readership for this work will be researchers and clinicians based in academic, industrial and healthcare settings all over the world.
This book focuses on posttraumatic repair and reconstruction of peripheral nerves. Written by internationally respected specialists, it provides an overview of the challenges and the latest advances in diagnosis and treatment of traumatic peripheral nerve injuries. It presents an outline of state-of the-art procedures from diagnostics, including newest imaging techniques, over conventional and alternative surgical approaches to clinical follow-up and rehabilitation, including the latest concepts to improve functional recovery. The purely clinical topics are preceded by neuroanatomical principles and neurobiological events related to peripheral nerve transection injuries and followed by an outlook on current experimental developments in the area of biomaterials for artificial nerve grafts and peripheral nerve tissue engineering. Peripheral nerve injuries not only affect the nerve tissue at the site of injury, but also target tissue and parts of the central nervous system. They often have dramatic consequences for patients, including loss of sensory and motor functions combined with paresthesia or pain, and a reduced quality of life and ability to work. An adequate understanding of the procedures for proper decision-making and reconstructing peripheral nerves is therefore essential to ensure optimized functional recovery.
Combating neural degeneration from injury or disease is extremely difficult in the brain and spinal cord, i.e. central nervous system (CNS). Unlike the peripheral nerves, CNS neurons are bombarded by physical and chemical restrictions that prevent proper healing and restoration of function. The CNS is vital to bodily function, and loss of any part of it can severely and permanently alter a person's quality of life. Tissue engineering could offer much needed solutions to regenerate or replace damaged CNS tissue. This review will discuss current CNS tissue engineering approaches integrating scaffolds, cells and stimulation techniques. Hydrogels are commonly used CNS tissue engineering scaffolds to stimulate and enhance regeneration, but fiber meshes and other porous structures show specific utility depending on application. CNS relevant cell sources have focused on implantation of exogenous cells or stimulation of endogenous populations. Somatic cells of the CNS are rarely utilized for tissue engineering; however, glial cells of the peripheral nervous system (PNS) may be used to myelinate and protect spinal cord damage. Pluripotent and multipotent stem cells offer alternative cell sources due to continuing advancements in identification and differentiation of these cells. Finally, physical, chemical, and electrical guidance cues are extremely important to neural cells, serving important roles in development and adulthood. These guidance cues are being integrated into tissue engineering approaches. Of particular interest is the inclusion of cues to guide stem cells to differentiate into CNS cell types, as well to guide neuron targeting. This review should provide the reader with a broad understanding of CNS tissue engineering challenges and tactics, with the goal of fostering the future development of biologically inspired designs. Table of Contents: Introduction / Anatomy of the CNS and Progression of Neurological Damage / Biomaterials for Scaffold Preparation / Cell Sources for CNS TE / Stimulation and Guidance / Concluding Remarks
Interest in the study of peripheral nerve repair and regeneration has increased significantly over the last twenty years and today the number of nerve reconstructions performed is progressively increasing due to the continuous improvement in surgical technology and to the spread of microsurgical skills among surgeons worldwide. This volume of International Review of Neurobiology providdes an overview of the state of the art knowledge in peripheral nerve repair and regeneration by bringing together a number of reviews that critically address some the most important issues in this biomedical field.