Download Free Tip Resistance Of A Miniature Cone Penetrometer Using Triaxial Apparatus For Clean And Silty Sand Book in PDF and EPUB Free Download. You can read online Tip Resistance Of A Miniature Cone Penetrometer Using Triaxial Apparatus For Clean And Silty Sand and write the review.

The static cone penetration tests are quite extensively used for carrying out in-situ geotechnical investigations both for onshore and offshore sites especially where the soil mass is expected to comprise of either soft to medium stiff clays or loose to medium dense sands. The wide use of the cone penetration tests (CPT) in geotechnical engineering has resulted in a great demand for developing necessary correlations between the cone penetration resistance and different engineering properties of soils. The successful interpretation of the cone penetration test data depends mainly on the various empirical correlations which are often derived with the help of a controlled testing in calibration chambers. The calibration chambers have been deployed in various sizes (diameter varying from 0.55 m to 2.10 m) by a number of researchers. It is quite an expensive and time consuming exercise to carry out controlled tests in a large size calibration chamber. The task becomes even much more difficult when a sample comprising of either silt or clay has to be prepared. As a result, most of the reported cone penetration tests in calibration chambers are mainly performed in a sandy material. Taking into account the various difficulties associated with performing tests in large calibration chambers, in the present study, it is attempted to make use of a miniature static cone penetrometer having a diameter of 19.5 mm. This cone was gradually penetrated at a uniform rate in a triaxial cell in which a soil sample of a given material was prepared; the diameter of the cone was intentionally chosen smaller so that the ratio of the diameter of the cell to that of the cone becomes a little larger. Two different diameters of the cells, namely, 91 mm and 140 mm, were used to explore the effect of the ratio of chamber (cell) size to that of the cone size. In addition, the rate of penetration rate was also varied from 0.6 mm/minute to 6.0 mm/minute (the maximum possible rate for the chosen triax.
Cone penetrometer tests were carried out in a 140 mm diameter triaxial chamber by using a miniature cone of diameter 19.5 mm. The rate of cone penetration was varied from 0.01 mm/s to 0.1 mm/s. Tests were performed in (i) clean sand, (ii) silty sand, and (iii) sand added with fly ash. Two different effective vertical pressures (?v), 100 kPa and 300 kPa, were employed. It was noted that for clean and silty sand, the effect of penetration rate on the ultimate tip resistance (qcu) of the cone was found to remain only marginal. On the other hand, for sand added with 30 % fly ash, the variation in qcu values with penetration rate was found to become quite significant. The effect of penetration rate on qcu in all the cases was found to increase with a decrease in the rate of cone penetration. It was noted that with an increase in ?v, the effect of penetration rate on qcu was found to become smaller. The effect of the cone penetration rate on qcu generally reduces with an increase in the relative density of the material.
Cone penetration testing (CPT) has become the industry standard for in situ testing of cohesionless soils, and in particular, field liquefaction evaluation. The empirical methods for the interpretation of CPT data are either based on field data or the observation of CPT measurements in laboratory samples. In this study, a miniature cone penetrometer (with a diameter of 6 mm) is developed for understanding the response of loose to medium-dense sands. A modified triaxial cell is used for sample preparation and containment of the sample during cone penetration. The miniature cone can measure cone tip resistance, sleeve friction, and excess pore water pressure developed at the cone tip. While cone tip resistance is measured by a separate load cell, sleeve friction is obtained by subtracting cone tip resistance from a combined measurement of tip resistance and sleeve frictional force. Due to the free-draining nature of the sand tested in this study, no excess pore water pressure is developed during cone penetration. The measured data from the miniature cone are verified by comparison with CPT resistances measured in several other calibration chamber experiments on similar sands. Compared to a large calibration chamber with a standard size cone, the miniature cone allows quicker and less expensive CPT experiments in a more uniform sample.
NCHRP synthesis 368 explores the current practices of departments of transportation associated with cone penetration testing (CPT). The report examines cone penetrometer equipment options; field testing procedures; CPT data presentation and geostratigraphic profiling; CPT evaluation of soil engineering parameters and properties; CPT for deep foundations, pilings, shallow foundations, and embankments; and CPT use in ground modifications and difficult ground conditions.
The electronic cone penetrometer is a popular in situ investigation tool for site characterization. This research report describes the application of this proven concept of the cone penetration test (CPT) to highway design and construction control by miniaturization. A miniature cone penetrometer with a projected cone area of 2 sq cm has been developed and implemented in a Continuous Intrusion Miniature Cone Penetration Test system (CIMCPT). This novel device may be used for rapid, accurate and economical characterization of sites and to determine engineering soil parameters needed in the design of pavements, embankments, and earth structures.
This book presents a one-stop reference to the empirical correlations used extensively in geotechnical engineering. Empirical correlations play a key role in geotechnical engineering designs and analysis. Laboratory and in situ testing of soils can add significant cost to a civil engineering project. By using appropriate empirical correlations, it is possible to derive many design parameters, thus limiting our reliance on these soil tests. The authors have decades of experience in geotechnical engineering, as professional engineers or researchers. The objective of this book is to present a critical evaluation of a wide range of empirical correlations reported in the literature, along with typical values of soil parameters, in the light of their experience and knowledge. This book will be a one-stop-shop for the practising professionals, geotechnical researchers and academics looking for specific correlations for estimating certain geotechnical parameters. The empirical correlations in the forms of equations and charts and typical values are collated from extensive literature review, and from the authors' database.
This manual presents procedures and guidelines applicable to the use of the cone penetration test. It represents the author's interpretation of the state-of-the-art in Dutch static cone testing as of February 1977. Its contents should provide assistance and uniformity to engineers concerned with the interpretation of the data obtained from such testing. Only geotechnical engineers familiar with the fundamentals of soil mechanics and foundation engineering should use this manual. The manual includes: Introduction and review of the general principals concerning cone penetrometer testing. Individual design chapters which address topics such as: pile design, shear strength estimation, settlement calculation and compaction control; and Appendices which present previously published, pertinent information on cone penetrometer testing.
The Penetrometer and Soil Exploration: Interpretation of Penetration Diagrams—Theory presents the many uses of the penetrometer for investigating soil conditions. Testing methods include the following: (1) in situ load tests on full-scale foundations; (2) laboratory testing of undisturbed samples, and (3) in situ testing of soils. The book regards the advantages of using the penetrometer as a handy tool in drilling and sampling. The text emphasizes that the investigator should never rely entirely on the analogy or the extrapolation of information pertaining to a nearby site. The text describes the different shapes of the penetrometer diagrams obtained from tests in homogeneous cohesionless soil, as well as the significance of the embedment of a pile into the bearing stratum for deep foundation designs. The paper discusses the De Beer theory, Kerisel's theory, and the theory developed at the Delft Laboratory of Soil Mechanics. The laboratory determines the maximum soil pressure and the corresponding embedment of the pile. According to Professor L'Herminier, "the bearing capacity of a pile may be determined...from laboratory tests on soil samples, the other by extrapolating penetrometer data." The book is suitable for structural engineers, civil engineers, geologists, architects, and students of soil mechanics.
Cone Penetration Testing: Methods and Interpretation discusses the history, applications, and development of the cone penetration test procedures and related test procedures. The book is divided into two parts. Part 1 deals with the cone penetration test proper – its general and historical outline, equipment and their accuracy and calibration, the use of the test results, and its parameters in different kinds of soils and materials. Part 2 covers the role and use of piezocones and its use for the assessment of soil. The text is recommended for engineers and geologists who would like to know more about the applications of the pressuremeter and the interpretation of its results.