Download Free Time Relevance Of Convective Weather Forecast For Air Traffic Automation Book in PDF and EPUB Free Download. You can read online Time Relevance Of Convective Weather Forecast For Air Traffic Automation and write the review.

The Federal Aviation Administration (FAA) is handling nearly 120,000 flights a day through its Air Traffic Management (ATM) system and air traffic congestion is expected to increse substantially over the next 20 years. Weather-induced impacts to throughput and efficiency are the leading cause of flight delays accounting for 70% of all delays with convective weather accounting for 60% of all weather related delays. To support the Next Generation Air Traffic System goal of operating at 3X current capacity in the NAS, ATC decision support tools are being developed to create advisories to assist controllers in all weather constraints. Initial development of these decision support tools did not integrate information regarding weather constraints such as thunderstorms and relied on an additional system to provide that information. Future Decision Support Tools should move towards an integrated system where weather constraints are factored into the advisory of a Decision Support Tool (DST). Several groups such at NASA-Ames, Lincoln Laboratories, and MITRE are integrating convective weather data with DSTs. A survey of current convective weather forecast and observation data show they span a wide range of temporal and spatial resolutions. Short range convective observations can be obtained every 5 mins with longer range forecasts out to several days updated every 6 hrs. Today, the short range forecasts of less than 2 hours have a temporal resolution of 5 mins. Beyond 2 hours, forecasts have much lower temporal. resolution of typically 1 hour. Spatial resolutions vary from 1km for short range to 40km for longer range forecasts. Improving the accuracy of long range convective forecasts is a major challenge. A report published by the National Research Council states improvements for convective forecasts for the 2 to 6 hour time frame will only be achieved for a limited set of convective phenomena in the next 5 to 10 years. Improved longer range forecasts will be probabilistic a
Accurate prediction of convective storms 2- to 6-hours in advance is critical to selecting air traffic routes with minimal weather delays or diversions. This report summarizes the discussions of a workshop to explore present convective weather forecasting skill, strategies for improving that skill, ways to verify forecasts are accurate, and how to make forecasts useful to air traffic controllers, airline dispatchers, and pilots.
This volume presents new concepts and methods in Air Traffic Management, in particular: Collaborative Decision Making, as it incorporates for the first time airline companies in the management process; Congestion Pricing, as many part of the systems are and will remain saturated, hence only leveling of demand can contribute to global efficiency; Flow Management Methods, as the most important tools in planning and analysis; Models of Controller-Pilot Interaction, as deregulation increases the workload of this communication; Weather Forecast, as airport capacity is strongly affected by weather conditions.
Anyone who has experienced turbulence in flight knows that it is usually not pleasant, and may wonder why this is so difficult to avoid. The book includes papers by various aviation turbulence researchers and provides background into the nature and causes of atmospheric turbulence that affect aircraft motion, and contains surveys of the latest techniques for remote and in situ sensing and forecasting of the turbulence phenomenon. It provides updates on the state-of-the-art research since earlier studies in the 1960s on clear-air turbulence, explains recent new understanding into turbulence generation by thunderstorms, and summarizes future challenges in turbulence prediction and avoidance.
This report summarizes current processes and information sources used when convective weather impacts Air Traffic Control (ATC) operations at the Air Traffic Control System Command Center (ATCSCC) and Kansas City Air Route Traffic Control Center (ARTCC). In addition, user needs for convective weather forecast products are presented. ACT-32O collected information from both facilities through site visits and interviews during the early summer of 2000. Based upon collected information, it is recommended that the integration of a convective weather forecast capability, for example, the National Convective Weather Forecast (NCWF), into the Traffic Situation Display (TSD) be investigated. In addition, further research should be conducted to extend the forecase period of current automated forecast products.