Download Free Time Parallel Methods For Accelerating The Solution Of Structural Dynamics Problems Book in PDF and EPUB Free Download. You can read online Time Parallel Methods For Accelerating The Solution Of Structural Dynamics Problems and write the review.

The classical approach for solving evolution Partial Differential Equations (PDEs) using a parallel computer consists in first partitioning the spatial domain and assigning each subdomain to a processor to achieve space-parallelism, then advancing the solution sequentially. However, enabling parallelism along the time dimension, despite its intrinsic difficulty, can be of paramount importance to fast computations when space-parallelism is unfeasible, cannot fully exploit a massively parallel machine or when near-real-time prediction is desired. The aforementioned objective can be achieved by applying classical domain decomposition principles to the time axis. The latter is first partitioned into time-slices to be processed independently. Starting with approximate seed information that provides a set of initial conditions, the response is then advanced in parallel in each time-slice using a standard time-stepping integrator. This decomposed solution exhibits discontinuities or jumps at the time-slice boundaries if the initial guess is not accurate. Applying a Newton-like approach to the time-dependent system, a correction function is then computed to improve the accuracy of the seed values and the process is repeated until convergence is reached. Methods based on the above concept have been successfully applied to various problems but none was found to be competitive for even for the simplest of second-order hyperbolic PDEs, a class of equations that covers the field of structural dynamics among others. To overcome this difficulty, a key idea is to improve the sequential propagator used for correcting the seed values, observing that the original evolution problem and the derived corrective one are closely related. The present work first demonstrates how this insight can be brought to fruition in the context of linear oscillators, with numerical examples featuring structural models ranging from academic to more challenging large-scale ones. An extension of this method to nonlinear equations is then developed and its concrete application to geometrically nonlinear transient dynamics is presented. Finally, it is shown how the time-reversibility property that characterizes some of the above problems can be exploited to develop a new framework that provides an increased speed-up factor.
The classical approach for solving evolution Partial Differential Equations (PDEs) using a parallel computer consists in first partitioning the spatial domain and assigning each subdomain to a processor to achieve space-parallelism, then advancing the solution sequentially. However, enabling parallelism along the time dimension, despite its intrinsic difficulty, can be of paramount importance to fast computations when space-parallelism is unfeasible, cannot fully exploit a massively parallel machine or when near-real-time prediction is desired. The aforementioned objective can be achieved by applying classical domain decomposition principles to the time axis. The latter is first partitioned into time-slices to be processed independently. Starting with approximate seed information that provides a set of initial conditions, the response is then advanced in parallel in each time-slice using a standard time-stepping integrator. This decomposed solution exhibits discontinuities or jumps at the time-slice boundaries if the initial guess is not accurate. Applying a Newton-like approach to the time-dependent system, a correction function is then computed to improve the accuracy of the seed values and the process is repeated until convergence is reached. Methods based on the above concept have been successfully applied to various problems but none was found to be competitive for even for the simplest of second-order hyperbolic PDEs, a class of equations that covers the field of structural dynamics among others. To overcome this difficulty, a key idea is to improve the sequential propagator used for correcting the seed values, observing that the original evolution problem and the derived corrective one are closely related. The present work first demonstrates how this insight can be brought to fruition in the context of linear oscillators, with numerical examples featuring structural models ranging from academic to more challenging large-scale ones. An extension of this method to nonlinear equations is then developed and its concrete application to geometrically nonlinear transient dynamics is presented. Finally, it is shown how the time-reversibility property that characterizes some of the above problems can be exploited to develop a new framework that provides an increased speed-up factor.
This book gathers a selection of invited and contributed lectures from the European Conference on Numerical Mathematics and Advanced Applications (ENUMATH) held in Lausanne, Switzerland, August 26-30, 2013. It provides an overview of recent developments in numerical analysis, computational mathematics and applications from leading experts in the field. New results on finite element methods, multiscale methods, numerical linear algebra and discretization techniques for fluid mechanics and optics are presented. As such, the book offers a valuable resource for a wide range of readers looking for a state-of-the-art overview of advanced techniques, algorithms and results in numerical mathematics and scientific computing.
An informative look at the theory, computer implementation, and application of the scaled boundary finite element method This reliable resource, complete with MATLAB, is an easy-to-understand introduction to the fundamental principles of the scaled boundary finite element method. It establishes the theory of the scaled boundary finite element method systematically as a general numerical procedure, providing the reader with a sound knowledge to expand the applications of this method to a broader scope. The book also presents the applications of the scaled boundary finite element to illustrate its salient features and potentials. The Scaled Boundary Finite Element Method: Introduction to Theory and Implementation covers the static and dynamic stress analysis of solids in two and three dimensions. The relevant concepts, theory and modelling issues of the scaled boundary finite element method are discussed and the unique features of the method are highlighted. The applications in computational fracture mechanics are detailed with numerical examples. A unified mesh generation procedure based on quadtree/octree algorithm is described. It also presents examples of fully automatic stress analysis of geometric models in NURBS, STL and digital images. Written in lucid and easy to understand language by the co-inventor of the scaled boundary element method Provides MATLAB as an integral part of the book with the code cross-referenced in the text and the use of the code illustrated by examples Presents new developments in the scaled boundary finite element method with illustrative examples so that readers can appreciate the significant features and potentials of this novel method—especially in emerging technologies such as 3D printing, virtual reality, and digital image-based analysis The Scaled Boundary Finite Element Method: Introduction to Theory and Implementation is an ideal book for researchers, software developers, numerical analysts, and postgraduate students in many fields of engineering and science.
FUNDAMENTALS OF STRUCTURAL DYNAMICS From theory and fundamentals to the latest advances in computational and experimental modal analysis, this is the definitive, updated reference on structural dynamics. This edition updates Professor Craig’s classic introduction to structural dynamics, which has been an invaluable resource for practicing engineers and a textbook for undergraduate and graduate courses in vibrations and/or structural dynamics. Along with comprehensive coverage of structural dynamics fundamentals, finite-element–based computational methods, and dynamic testing methods, this Second Edition includes new and expanded coverage of computational methods, as well as introductions to more advanced topics, including experimental modal analysis and “active structures.” With a systematic approach, it presents solution techniques that apply to various engineering disciplines. It discusses single degree-of-freedom (SDOF) systems, multiple degrees-of-freedom (MDOF) systems, and continuous systems in depth; and includes numeric evaluation of modes and frequency of MDOF systems; direct integration methods for dynamic response of SDOF systems and MDOF systems; and component mode synthesis. Numerous illustrative examples help engineers apply the techniques and methods to challenges they face in the real world. MATLAB® is extensively used throughout the book, and many of the .m-files are made available on the book’s Web site. Fundamentals of Structural Dynamics, Second Edition is an indispensable reference and “refresher course” for engineering professionals; and a textbook for seniors or graduate students in mechanical engineering, civil engineering, engineering mechanics, or aerospace engineering.
The use of COSMOS for the analysis and solution of structural dynamics problems is introduced in this new edition. The COSMOS program was selected from among the various professional programs available because it has the capability of solving complex problems in structures, as well as in other engin eering fields such as Heat Transfer, Fluid Flow, and Electromagnetic Phenom ena. COSMOS includes routines for Structural Analysis, Static, or Dynamics with linear or nonlinear behavior (material nonlinearity or large displacements), and can be used most efficiently in the microcomputer. The larger version of COSMOS has the capacity for the analysis of structures modeled up to 64,000 nodes. This fourth edition uses an introductory version that has a capability limited to 50 nodes or 50 elements. This version is included in the supplement, STRUCTURAL DYNAMICS USING COSMOS 1. The sets of educational programs in Structural Dynamics and Earthquake Engineering that accompanied the third edition have now been extended and updated. These sets include programs to determine the response in the time or frequency domain using the FFf (Fast Fourier Transform) of structures modeled as a single oscillator. Also included is a program to determine the response of an inelastic system with elastoplastic behavior and a program for the development of seismic response spectral charts. A set of seven computer programs is included for modeling structures as two-dimensional and three dimensional frames and trusses.
Computational techniques for the analysis and design of structural dynamic systems using numerical methods have been the focus of an enormous amount of research for several decades. In general, the numerical methods utilized to solve these problems include two phases: (a) spatial discretization by either the finite element method (FEM) or the finite difference method (FDM), and (b) solution of systems of time dependent second-order ordinary differential equations. In addition, the significantly powerful advances in computer systems capabilities have put on the desks of structural systems designers enormous computing power either by means of increasingly effective computer workstations or else through PCs (personal computers), whose increasing power has succeeded in marginalizing the computational power differences between PCs and workstations in many cases. This volume is a comprehensive treatment of the issues involved in computational techniques in structural dynamic systems.