Download Free Time Critical Cooperative Path Following Control Of Multiple Unmanned Aerial Vehicles Book in PDF and EPUB Free Download. You can read online Time Critical Cooperative Path Following Control Of Multiple Unmanned Aerial Vehicles and write the review.

Time-Critical Cooperative Control of Autonomous Air Vehicles presents, in an easy-to-read style, the latest research conducted in the industry, while also introducing a set of novel ideas that illuminate a new approach to problem-solving. The book is virtually self-contained, giving the reader a complete, integrated presentation of the different concepts, mathematical tools, and control solutions needed to tackle and solve a number of problems concerning time-critical cooperative control of UAVs. By including case studies of fixed-wing and multirotor UAVs, the book effectively broadens the scope of application of the methodologies developed. This theoretical presentation is complemented with the results of flight tests with real UAVs, and is an ideal reference for researchers and practitioners from academia, research labs, commercial companies, government workers, and those in the international aerospace industry. - Addresses important topics related to time-critical cooperative control of UAVs - Describes solutions to the problems rooted in solid dynamical systems theory - Applies the solutions developed to fixed-wing and multirotor UAVs - Includes the results of field tests with both classes of UAVs
This monograph introduces recent developments in formation control of distributed-agent systems. Eschewing the traditional concern with the dynamic characteristics of individual agents, the book proposes a treatment that studies the formation control problem in terms of interactions among agents including factors such as sensing topology, communication and actuation topologies, and computations. Keeping pace with recent technological advancements in control, communications, sensing and computation that have begun to bring the applications of distributed-systems theory out of the industrial sphere and into that of day-to-day life, this monograph provides distributed control algorithms for a group of agents that may behave together. Unlike traditional control laws that usually require measurements with respect to a global coordinate frame and communications between a centralized operation center and agents, this book provides control laws that require only relative measurements and communications between agents without interaction with a centralized operator. Since the control algorithms presented in this book do not require any global sensing and any information exchanges with a centralized operation center, they can be realized in a fully distributed way, which significantly reduces the operation and implementation costs of a group of agents. Formation Control will give both students and researchers interested in pursuing this field a good grounding on which to base their work.
This book presents selected papers of the Itzhack Y. Bar-Itzhack Memorial Sympo- sium on Estimation, Navigation, and Spacecraft Control. Itzhack Y. Bar-Itzhack, professor Emeritus of Aerospace Engineering at the Technion – Israel Institute of Technology, was a prominent and world-renowned member of the applied estimation, navigation, and spacecraft attitude determination communities. He touched the lives of many. He had a love for life, an incredible sense of humor, and wisdom that he shared freely with everyone he met. To honor Professor Bar-Itzhack's memory, as well as his numerous seminal professional achievements, an international symposium was held in Haifa, Israel, on October 14–17, 2012, under the auspices of the Faculty of Aerospace Engineering at the Technion and the Israeli Association for Automatic Control. The book contains 27 selected, revised, and edited contributed chapters written by eminent international experts. The book is organized in three parts: (1) Estimation, (2) Navigation and (3) Spacecraft Guidance, Navigation and Control. The volume was prepared as a reference for research scientists and practicing engineers from academy and industry in the fields of estimation, navigation, and spacecraft GN&C.
This volume of Advances in Intelligent and Soft Computing contains accepted papers presented at the 10th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2015), held in the beautiful and historic city of Burgos (Spain), in June 2015. Soft computing represents a collection or set of computational techniques in machine learning, computer science and some engineering disciplines, which investigate, simulate and analyze very complex issues and phenomena. This Conference is mainly focused on its industrial and environmental applications. After a through peer-review process, the SOCO 2015 International Program Committee selected 41 papers, written by authors from 15 different countries. These papers are published in present conference proceedings, achieving an acceptance rate of 40%. The selection of papers was extremely rigorous in order to maintain the high quality of the conference and we would like to thank the members of the International Program Committees for their hard work during the review process. This is a crucial issue for creation of a high standard conference and the SOCO conference would not exist without their help.
Unmanned systems are one of the fastest-growing and widely developing technologies in the world, offering many possibilities for a variety of research fields. This book comprises the proceedings of the 2021 International Symposium on Unmanned Systems and the Defense Industry (ISUDEF), a multi-disciplinary conference on a broad range of current research and issues in areas such as autonomous technology, unmanned aircraft technologies, avionics, radar systems, air defense, aerospace robotics and mechatronics, and aircraft technology design. ISUDEF allows researchers, scientists, engineers, practitioners, policymakers, and students to exchange information, present new technologies and developments, and discuss future direction, strategies, and priorities in the field of autonomous vehicles and unmanned aircraft technologies. Covers a range of emerging topics; Addresses current issues on autonomous vehicles and unmanned aircraft; Full proceedings of ISUDEF 2021 held at Howard University.
This book includes original, peer-reviewed research papers from the 2021 5th Chinese Conference on Swarm Intelligence and Cooperative Control (CCSICC2021), held in Shenzhen, China on January 19-22, 2022. The topics covered include but are not limited to: reviews and discussions of swarm intelligence, basic theories on swarm intelligence, swarm communication and networking, swarm perception, awareness and location, swarm decision and planning, cooperative control, cooperative guidance, swarm simulation and assessment. The papers showcased here share the latest findings on theories, algorithms and applications in swarm intelligence and cooperative control, making the book a valuable asset for researchers, engineers, and university students alike.
This book focuses on the importance of human factors in the development of reliable and safe unmanned systems. It discusses current challenges such as how to improve perceptual and cognitive abilities of robots, develop suitable synthetic vision systems, cope with degraded reliability of unmanned systems, predict robotic behavior in case of a loss of communication, the vision for future soldier-robot teams, human-agent teaming, real-world implications for human-robot interaction, and approaches to standardize both display and control of technologies across unmanned systems. Based on the AHFE 2016 International Conference on Human Factors in Robots and Unmanned Systems, held on July 27-31, 2016, in Walt Disney World®, Florida, USA, this book is expected to foster new discussion and stimulate new ideas towards the development of more reliable, safer, and functional devices for carrying out automated and concurrent tasks.
This book presents theoretical foundations and technical implementation guidelines for multi-vehicle fleet maneuvering, which can be implemented by readers and can also be a basis for future research. As a research monograph, this book presents fundamental concepts, theories, and technologies for localization, motion planning, and control of multi-vehicle systems, which can be a reference book for researchers and graduate students from different levels. As a technical guide, this book provides implementation guidelines, pseudocode, and flow diagrams for practitioners to develop their own systems. Readers should have a preliminary knowledge of mobile robotics, state estimation and automatic control to fully understand the contents in this book. To make this book more readable and understandable, extensive experimental results are presented to support each chapter.
This book deals with optimization methods as tools for decision making and control in the presence of model uncertainty. It is oriented to the use of these tools in engineering, specifically in automatic control design with all its components: analysis of dynamical systems, identification problems, and feedback control design. Developments in Model-Based Optimization and Control takes advantage of optimization-based formulations for such classical feedback design objectives as stability, performance and feasibility, afforded by the established body of results and methodologies constituting optimal control theory. It makes particular use of the popular formulation known as predictive control or receding-horizon optimization. The individual contributions in this volume are wide-ranging in subject matter but coordinated within a five-part structure covering material on: · complexity and structure in model predictive control (MPC); · collaborative MPC; · distributed MPC; · optimization-based analysis and design; and · applications to bioprocesses, multivehicle systems or energy management. The various contributions cover a subject spectrum including inverse optimality and more modern decentralized and cooperative formulations of receding-horizon optimal control. Readers will find fourteen chapters dedicated to optimization-based tools for robustness analysis, and decision-making in relation to feedback mechanisms—fault detection, for example—and three chapters putting forward applications where the model-based optimization brings a novel perspective. Developments in Model-Based Optimization and Control is a selection of contributions expanded and updated from the Optimisation-based Control and Estimation workshops held in November 2013 and November 2014. It forms a useful resource for academic researchers and graduate students interested in the state of the art in predictive control. Control engineers working in model-based optimization and control, particularly in its bioprocess applications will also find this collection instructive.
Autonomous unmanned air vehicles (UAVs) are critical to current and future military, civil, and commercial operations. Despite their importance, no previous textbook has accessibly introduced UAVs to students in the engineering, computer, and science disciplines--until now. Small Unmanned Aircraft provides a concise but comprehensive description of the key concepts and technologies underlying the dynamics, control, and guidance of fixed-wing unmanned aircraft, and enables all students with an introductory-level background in controls or robotics to enter this exciting and important area. The authors explore the essential underlying physics and sensors of UAV problems, including low-level autopilot for stability and higher-level autopilot functions of path planning. The textbook leads the student from rigid-body dynamics through aerodynamics, stability augmentation, and state estimation using onboard sensors, to maneuvering through obstacles. To facilitate understanding, the authors have replaced traditional homework assignments with a simulation project using the MATLAB/Simulink environment. Students begin by modeling rigid-body dynamics, then add aerodynamics and sensor models. They develop low-level autopilot code, extended Kalman filters for state estimation, path-following routines, and high-level path-planning algorithms. The final chapter of the book focuses on UAV guidance using machine vision. Designed for advanced undergraduate or graduate students in engineering or the sciences, this book offers a bridge to the aerodynamics and control of UAV flight.