Download Free Time And Space Concepts Book in PDF and EPUB Free Download. You can read online Time And Space Concepts and write the review.

INSTANT NEW YORK TIMES BESTSELLER “Most appealing... technical accuracy and lightness of tone... Impeccable.”—Wall Street Journal “A porthole into another world.”—Scientific American “Brings science dissemination to a new level.”—Science The most trusted explainer of the most mind-boggling concepts pulls back the veil of mystery that has too long cloaked the most valuable building blocks of modern science. Sean Carroll, with his genius for making complex notions entertaining, presents in his uniquely lucid voice the fundamental ideas informing the modern physics of reality. Physics offers deep insights into the workings of the universe but those insights come in the form of equations that often look like gobbledygook. Sean Carroll shows that they are really like meaningful poems that can help us fly over sierras to discover a miraculous multidimensional landscape alive with radiant giants, warped space-time, and bewilderingly powerful forces. High school calculus is itself a centuries-old marvel as worthy of our gaze as the Mona Lisa. And it may come as a surprise the extent to which all our most cutting-edge ideas about black holes are built on the math calculus enables. No one else could so smoothly guide readers toward grasping the very equation Einstein used to describe his theory of general relativity. In the tradition of the legendary Richard Feynman lectures presented sixty years ago, this book is an inspiring, dazzling introduction to a way of seeing that will resonate across cultural and generational boundaries for many years to come.
NATIONAL BESTSELLER • From one of the world’s leading physicists and author of the Pulitzer Prize finalist The Elegant Universe, comes “an astonishing ride” through the universe (The New York Times) that makes us look at reality in a completely different way. Space and time form the very fabric of the cosmos. Yet they remain among the most mysterious of concepts. Is space an entity? Why does time have a direction? Could the universe exist without space and time? Can we travel to the past? Greene has set himself a daunting task: to explain non-intuitive, mathematical concepts like String Theory, the Heisenberg Uncertainty Principle, and Inflationary Cosmology with analogies drawn from common experience. From Newton’s unchanging realm in which space and time are absolute, to Einstein’s fluid conception of spacetime, to quantum mechanics’ entangled arena where vastly distant objects can instantaneously coordinate their behavior, Greene takes us all, regardless of our scientific backgrounds, on an irresistible and revelatory journey to the new layers of reality that modern physics has discovered lying just beneath the surface of our everyday world.
This book is based on a conference held at Oxford in the Spring of 1984 to discuss Quantum Gravity. As an assessment of the present status of quantum theory which also considers future developments, this book should provide much stimulating material for both researchers and post graduate students in theortical and mathematical physics.
One of TIME’s Ten Best Nonfiction Books of the Decade "Meet the new Stephen Hawking . . . The Order of Time is a dazzling book." --The Sunday Times From the bestselling author of Seven Brief Lessons on Physics, Reality Is Not What It Seems, Helgoland, and Anaximander comes a concise, elegant exploration of time. Why do we remember the past and not the future? What does it mean for time to "flow"? Do we exist in time or does time exist in us? In lyric, accessible prose, Carlo Rovelli invites us to consider questions about the nature of time that continue to puzzle physicists and philosophers alike. For most readers this is unfamiliar terrain. We all experience time, but the more scientists learn about it, the more mysterious it remains. We think of it as uniform and universal, moving steadily from past to future, measured by clocks. Rovelli tears down these assumptions one by one, revealing a strange universe where at the most fundamental level time disappears. He explains how the theory of quantum gravity attempts to understand and give meaning to the resulting extreme landscape of this timeless world. Weaving together ideas from philosophy, science and literature, he suggests that our perception of the flow of time depends on our perspective, better understood starting from the structure of our brain and emotions than from the physical universe. Already a bestseller in Italy, and written with the poetic vitality that made Seven Brief Lessons on Physics so appealing, The Order of Time offers a profoundly intelligent, culturally rich, novel appreciation of the mysteries of time.
Historical surveys consider Judeo-Christian notions of space, Newtonian absolute space, perceptions from 18th century to the present, more. Numerous quotations and references. "Admirably compact and swiftly paced style." — Philosophy of Science.
The book presents seven fundamental concepts in spacetime physics mostly by following Hermann Minkowski’s revolutionary ideas summarized in his 1908 lecture "Space and Time." These concepts are: spacetime, inertial and accelerated motion in spacetime physics, the origin and nature of inertia in spacetime physics, relativistic mass, gravitation, gravitational waves, and black holes. They have been selected because they appear to be causing most misconceptions and confusion in spacetime physics. This second edition has been revised to include additional clarifications, more detailed elaboration of the arguments and also new material published in the interim.
The amount of new information is constantly increasing, faster than our ability to fully interpret and utilize it to improve human experiences. Addressing this asymmetry requires novel and revolutionary scientific methods and effective human and artificial intelligence interfaces. By lifting the concept of time from a positive real number to a 2D complex time (kime), this book uncovers a connection between artificial intelligence (AI), data science, and quantum mechanics. It proposes a new mathematical foundation for data science based on raising the 4D spacetime to a higher dimension where longitudinal data (e.g., time-series) are represented as manifolds (e.g., kime-surfaces). This new framework enables the development of innovative data science analytical methods for model-based and model-free scientific inference, derived computed phenotyping, and statistical forecasting. The book provides a transdisciplinary bridge and a pragmatic mechanism to translate quantum mechanical principles, such as particles and wavefunctions, into data science concepts, such as datum and inference-functions. It includes many open mathematical problems that still need to be solved, technological challenges that need to be tackled, and computational statistics algorithms that have to be fully developed and validated. Spacekime analytics provide mechanisms to effectively handle, process, and interpret large, heterogeneous, and continuously-tracked digital information from multiple sources. The authors propose computational methods, probability model-based techniques, and analytical strategies to estimate, approximate, or simulate the complex time phases (kime directions). This allows transforming time-varying data, such as time-series observations, into higher-dimensional manifolds representing complex-valued and kime-indexed surfaces (kime-surfaces). The book includes many illustrations of model-based and model-free spacekime analytic techniques applied to economic forecasting, identification of functional brain activation, and high-dimensional cohort phenotyping. Specific case-study examples include unsupervised clustering using the Michigan Consumer Sentiment Index (MCSI), model-based inference using functional magnetic resonance imaging (fMRI) data, and model-free inference using the UK Biobank data archive. The material includes mathematical, inferential, computational, and philosophical topics such as Heisenberg uncertainty principle and alternative approaches to large sample theory, where a few spacetime observations can be amplified by a series of derived, estimated, or simulated kime-phases. The authors extend Newton-Leibniz calculus of integration and differentiation to the spacekime manifold and discuss possible solutions to some of the "problems of time". The coverage also includes 5D spacekime formulations of classical 4D spacetime mathematical equations describing natural laws of physics, as well as, statistical articulation of spacekime analytics in a Bayesian inference framework. The steady increase of the volume and complexity of observed and recorded digital information drives the urgent need to develop novel data analytical strategies. Spacekime analytics represents one new data-analytic approach, which provides a mechanism to understand compound phenomena that are observed as multiplex longitudinal processes and computationally tracked by proxy measures. This book may be of interest to academic scholars, graduate students, postdoctoral fellows, artificial intelligence and machine learning engineers, biostatisticians, econometricians, and data analysts. Some of the material may also resonate with philosophers, futurists, astrophysicists, space industry technicians, biomedical researchers, health practitioners, and the general public.
Space and time, their infiniteness and/or their limit(ation)s, their coding, conceptualization and the relationship between the two, have been intriguing people for millennia. Linguistics and literature are no exceptions in this sense. This book brings together eight essays which all deal with the expression of space and/or time in language and/or literature. The book explores the issues of space, time and their interrelation from two different perspectives: the linguistic and the literary. The first section—Time and Space in Language—contains four papers which focus on linguistics, i.e. explore issues relative to the expression of time and space in natural languages. The topics under consideration include: typology regarding the expression of spatial information in languages around the world (Ch.1), space as expressed and conceptualized in neutral, postural and verbs of fictive motion (Ch. 2), prepositional semantics (Ch.3), aspectuality (in Tamil, Ch. 4). All articles propose innovative topics and/or approaches, crossreferring when possible between space and time. Given that all seem to propose at least some elements of “language universality” vs. “language variability”, the strong cognitivist nature of the approach (even when the paper is not written within a cognitive linguistic framework) represents a particularly strong feature of the section, with a strong appeal to experts from fields that need not necessarily be linguistic. The second section of this volume—Space and Time in Literature—brings together four essays dealing with literary topics. Inherent in each narrative are both temporal and spatial implications because a literary text testifies of a certain time, it is from and about a certain period, as well as about a certain space, even if virtual. A particularly strong feature of these papers is that they envision space and time as complementary parameters of experience and not as conceptual opposites, following the transfer of perspective through the whole century. Departing from the late nineteenth century England’s and Croatia’s fictive spaces (Ch. 5), the topic moves via the American Southern Gothic, focusing on Faulkner from the thirties to the early sixties (Ch. 6), via the post-WWII perspectives on history, probing the postmodern context of temporality (Ch 7), to finally reach the contemporary era of post 9/11 space-time (Ch 8). The voyage from chapter five to eight is thus a journey through space and time that allows for some answers to the nature of reality (of a variety of space-times) as conceived by both the authors of these essays as well as by the authors that these essays discuss. The main goal of the editors has been to bring together different scientific traditions which can contribute complementary concerns and methodologies to the issues under exam; from the literary and descriptive via the diachronic and typological explorations all the way to cognitive (linguistic) analyses, bordering psycholinguistics and neuroscience. One of the strengths of this volume thus lies in the diversity of perspectives articulated within it, where the agreements, but also the controversies and divergences demonstrate constant changes in society which, in turn, shapes our views of space-time/reality. All this also suggests that science and literature are not above or apart from their culture, but embedded within it, and that there exists a strong relativistic interrelation between (spatio-temporal) reality and culture. The only hope to objectively envisage any if not all of the above, is by learning how to move (our thought) through space, time or, to put it in simpler terms, how to shift perspectives.