Download Free Thurstons Work On Surfaces Mn 48 Book in PDF and EPUB Free Download. You can read online Thurstons Work On Surfaces Mn 48 and write the review.

This book provides a detailed exposition of William Thurston's work on surface homeomorphisms, available here for the first time in English. Based on material of Thurston presented at a seminar in Orsay from 1976 to 1977, it covers topics such as the space of measured foliations on a surface, the Thurston compactification of Teichmüller space, the Nielsen-Thurston classification of surface homeomorphisms, and dynamical properties of pseudo-Anosov diffeomorphisms. Thurston never published the complete proofs, so this text is the only resource for many aspects of the theory. Thurston was awarded the prestigious Fields Medal in 1982 as well as many other prizes and honors, and is widely regarded to be one of the major mathematical figures of our time. Today, his important and influential work on surface homeomorphisms is enjoying continued interest in areas ranging from the Poincaré conjecture to topological dynamics and low-dimensional topology. Conveying the extraordinary richness of Thurston's mathematical insight, this elegant and faithful translation from the original French will be an invaluable resource for the next generation of researchers and students.
This book unfolds ways to transform data into innovative solutions perceived as new remarkable and meaningful value. It offers practical views of the concepts and techniques readers need to get the most out of their large-scale research and data mining projects. It strides them through the data-analytical thinking, circumvents the difficulty in deciphering complex data systems and obtaining commercialization value from the data. Also known as data-driven science, soft computing and data mining disciplines cover a broad spectrum, an interdisciplinary field of scientific methods and processes. The book, Recent Advances in Soft Computing and Data Mining, delivers sufficient knowledge to tackle a wide range of issues seen in complex systems. This is done by exploring a vast combination of practices and applications by incorporating these two domains. To thrive in these data-driven ecosystems, researchers, data analysts, and practitioners must choose the best design to approach the problem with the most efficient tools and techniques. To thrive in these data-driven ecosystems, researchers, data analysts, and practitioners must understand the design choice and options of these approaches, thus to better appreciate the concepts, tools, and techniques used.
The goal of the book is to present a tapestry of ideas from various areas of mathematics in a clear and rigorous yet informal and friendly way. Prerequisites include undergraduate courses in real analysis and in linear algebra, and some knowledge of complex analysis. --from publisher description.
William Thurston's work has had a profound influence on mathematics. He connected whole mathematical subjects in entirely new ways and changed the way mathematicians think about geometry, topology, foliations, group theory, dynamical systems, and the way these areas interact. His emphasis on understanding and imagination in mathematical learning and thinking are integral elements of his distinctive legacy. This four-part collection brings together in one place Thurston's major writings, many of which are appearing in publication for the first time. Volumes I–III contain commentaries by the Editors. Volume IV includes a preface by Steven P. Kerckhoff. Volume IV contains Thurston's highly influential, though previously unpublished, 1977–78 Princeton Course Notes on the Geometry and Topology of 3-manifolds. It is an indispensable part of the Thurston collection but can also be used on its own as a textbook or for self-study.
This unique reference, aimed at research topologists, gives an exposition of the 'pseudo-Anosov' theory of foliations of 3-manifolds. This theory generalizes Thurston's theory of surface automorphisms and reveals an intimate connection between dynamics, geometry and topology in 3 dimensions. Significant themes returned to throughout the text include the importance of geometry, especially the hyperbolic geometry of surfaces, the importance of monotonicity, especially in1-dimensional and co-dimensional dynamics, and combinatorial approximation, using finite combinatorical objects such as train-tracks, branched surfaces and hierarchies to carry more complicated continuous objects.