Download Free Through Wall Synthetic Aperture Radar Twsar 3d Imaging Algorithm Design Book in PDF and EPUB Free Download. You can read online Through Wall Synthetic Aperture Radar Twsar 3d Imaging Algorithm Design and write the review.

Includes Proceedings Vol. 7821
Build your knowledge of SAR/ISAR imaging with this comprehensive and insightful resource The newly revised Second Edition of Inverse Synthetic Aperture Radar Imaging with MATLAB Algorithms covers in greater detail the fundamental and advanced topics necessary for a complete understanding of inverse synthetic aperture radar (ISAR) imaging and its concepts. Distinguished author and academician, Caner Özdemir, describes the practical aspects of ISAR imaging and presents illustrative examples of the radar signal processing algorithms used for ISAR imaging. The topics in each chapter are supplemented with MATLAB codes to assist readers in better understanding each of the principles discussed within the book. This new edition incudes discussions of the most up-to-date topics to arise in the field of ISAR imaging and ISAR hardware design. The book provides a comprehensive analysis of advanced techniques like Fourier-based radar imaging algorithms, and motion compensation techniques along with radar fundamentals for readers new to the subject. The author covers a wide variety of topics, including: Radar fundamentals, including concepts like radar cross section, maximum detectable range, frequency modulated continuous wave, and doppler frequency and pulsed radar The theoretical and practical aspects of signal processing algorithms used in ISAR imaging The numeric implementation of all necessary algorithms in MATLAB ISAR hardware, emerging topics on SAR/ISAR focusing algorithms such as bistatic ISAR imaging, polarimetric ISAR imaging, and near-field ISAR imaging, Applications of SAR/ISAR imaging techniques to other radar imaging problems such as thru-the-wall radar imaging and ground-penetrating radar imaging Perfect for graduate students in the fields of electrical and electronics engineering, electromagnetism, imaging radar, and physics, Inverse Synthetic Aperture Radar Imaging With MATLAB Algorithms also belongs on the bookshelves of practicing researchers in the related areas looking for a useful resource to assist them in their day-to-day professional work.
An authoritative work on Synthetic Aperture Radar system engineering, with key focus on high resolution imaging, moving target indication, and system engineering technology Synthetic Aperture Radar (SAR) is a powerful microwave remote sensing technique that is used to create high resolution two or three-dimensional representations of objects, such as landscapes, independent of weather conditions and sunlight illumination. SAR technology is a multidisciplinary field that involves microwave technology, antenna technology, signal processing, and image information processing. The use of SAR technology continues grow at a rapid pace in a variety of applications such as high-resolution wide-swath observation, multi-azimuth information acquisition, high-temporal information acquisition, 3-D terrain mapping, and image quality improvement. Design Technology of Synthetic Aperture Radar provides detailed coverage of the fundamental concepts, theories, technology, and design of SAR systems and sub-systems. Supported by the author’s over two decades of research and practice experience in the field, this in-depth volume systematically describes SAR design and presents the latest research developments. Providing examination of all topics relevant to SAR—from radar and antenna system design to receiver technology and signal and image information processing—this comprehensive resource: Provides wide-ranging, up-to-date examination of all major topics related to SAR science, systems, and software Includes guidelines to conduct grounding system designs and analysis Offers coverage of all SAR algorithm classes and detailed SAR algorithms suitable for enabling software implementations Surveys SAR and computed imaging literature of the last sixty years Emphasizes high resolution imaging, moving target indication, and system engineering Design Technology of Synthetic Aperture Radar is indispensable for graduate students majoring in SAR system design, microwave antenna, signal and information processing as well as engineers and technicians involved in SAR system techniques.
Through-the-wall radar imaging (TWRI) allows police, fire and rescue personnel, first responders, and defense forces to detect, identify, classify, and track the whereabouts of humans and moving objects. Electromagnetic waves are considered the most effective at achieving this objective, yet advances in this multi-faceted and multi-disciplinary technology require taking phenomenological issues into consideration and must be based on a solid understanding of the intricacies of EM wave interactions with interior and exterior objects and structures. Providing a broad overview of the myriad factors involved, namely size, weight, mobility, acquisition time, aperture distribution, power, bandwidth, standoff distance, and, most importantly, reliable performance and delivery of accurate information, Through-the-Wall Radar Imaging examines this technology from the algorithmic, modeling, experimentation, and system design perspectives. It begins with coverage of the electromagnetic properties of walls and building materials, and discusses techniques in the design of antenna elements and array configurations, beamforming concepts and issues, and the use of antenna array with collocated and distributed apertures. Detailed chapters discuss several suitable waveforms inverse scattering approaches and revolve around the relevance of physical-based model approaches in TWRI along with theoretical and experimental research in 3D building tomography using microwave remote sensing, high-frequency asymptotic modeling methods, synthetic aperture radar (SAR) techniques, impulse radars, airborne radar imaging of multi-floor buildings strategies for target detection, and detection of concealed targets. The book concludes with a discussion of how the Doppler principle can be used to measure motion at a very fine level of detail. The book provides a deep understanding of the challenges of TWRI, stressing its multidisciplinary and phenomenological nature. The breadth and depth of topics covered presents a highly detailed treatment of this potentially life-saving technology.
This practical reference shows SAR system designers and remote sensing specialists how to produce higher quality SAR images using data-driven algorithms, and apply powerful new techniques to measure and analyze SAR image content.
An up-to-date analysis of the SAR wavefront reconstruction signal theory and its digital implementation With the advent of fast computing and digital information processing techniques, synthetic aperture radar (SAR) technology has become both more powerful and more accurate. Synthetic Aperture Radar Signal Processing with MATLAB Algorithms addresses these recent developments, providing a complete, up-to-date analysis of SAR and its associated digital signal processing algorithms. This book introduces the wavefront reconstruction signal theory that underlies the best SAR imaging methods and provides clear guidelines to system design, implementation, and applications in diverse areas-from airborne reconnaissance to topographic imaging of ocean floors to surveillance and air traffic control to medical imaging techniques, and numerous others. Enabling professionals in radar signal and image processing to use synthetic aperture technology to its fullest potential, this work: * Includes M-files to supplement this book that can be retrieved from The MathWorks anonymous FTP server at ftp://ftp.mathworks.com/pub/books/soumekh * Provides practical examples and results from real SAR, ISAR, and CSAR databases * Outlines unique properties of the SAR signal that cannot be found in other information processing systems * Examines spotlight SAR, stripmap SAR, circular SAR, and monopulse SAR modalities * Discusses classical SAR processing issues such as motion compensation and radar calibration