Download Free Three Projects Sql Server And Python Gui For Data Analysis Book in PDF and EPUB Free Download. You can read online Three Projects Sql Server And Python Gui For Data Analysis and write the review.

PROJECT 1: FULL SOURCE CODE: SQL SERVER FOR STUDENTS AND DATA SCIENTISTS WITH PYTHON GUI In this project, we provide you with the SQL SERVER version of SQLite sample database named chinook. The chinook sample database is a good database for practicing with SQL, especially PostgreSQL. The detailed description of the database can be found on: https://www.sqlitetutorial.net/sqlite-sample-database/. The sample database consists of 11 tables: The employee table stores employees data such as employee id, last name, first name, etc. It also has a field named ReportsTo to specify who reports to whom; customers table stores customers data; invoices & invoice_items tables: these two tables store invoice data. The invoice table stores invoice header data and the invoice_items table stores the invoice line items data; The artist table stores artists data. It is a simple table that contains only the artist id and name; The album table stores data about a list of tracks. Each album belongs to one artist. However, one artist may have multiple albums; The media_type table stores media types such as MPEG audio and AAC audio files; genre table stores music types such as rock, jazz, metal, etc; The track table stores the data of songs. Each track belongs to one album; playlist & playlist_track tables: The playlist table store data about playlists. Each playlist contains a list of tracks. Each track may belong to multiple playlists. The relationship between the playlist table and track table is many-to-many. The playlist_track table is used to reflect this relationship. In this project, you will write Python script to create every table and insert rows of data into each of them. You will develop GUI with PyQt5 to each table in the database. You will also create GUI to plot: case distribution of order date by year, quarter, month, week, and day; the distribution of amount by year, quarter, month, week, day, and hour; the bottom/top 10 sales by employee, the bottom/top 10 sales by customer, the bottom/top 10 sales by customer, the bottom/top 10 sales by artist, the bottom/top 10 sales by genre, the bottom/top 10 sales by play list, the bottom/top 10 sales by customer city, the bottom/top 10 sales by customer city, the bottom/top 10 sales by customer city, the payment amount by month with mean and EWM, the average payment amount by every month, and amount payment in all years. PROJECT 2: FULL SOURCE CODE: SQL SERVER FOR DATA ANALYTICS AND VISUALIZATION WITH PYTHON GUI This book uses SQL SERVER version of MySQL-based Sakila sample database. It is a fictitious database designed to represent a DVD rental store. The tables of the database include film, film_category, actor, customer, rental, payment and inventory among others. The Sakila sample database is intended to provide a standard schema that can be used for examples in books, tutorials, articles, samples, and so forth. Detailed information about the database can be found on website: https://dev.mysql.com/doc/index-other.html. In this project, you will develop GUI using PyQt5 to: read SQL SERVER database and every table in it; read every actor in actor table, read every film in films table; plot case distribution of film release year, film rating, rental duration, and categorize film length; plot rating variable against rental_duration variable in stacked bar plots; plot length variable against rental_duration variable in stacked bar plots; read payment table; plot case distribution of Year, Day, Month, Week, and Quarter of payment; plot which year, month, week, days of week, and quarter have most payment amount; read film list by joining five tables: category, film_category, film_actor, film, and actor; plot case distribution of top 10 and bottom 10 actors; plot which film title have least and most sales; plot which actor have least and most sales; plot which film category have least and most sales; plot case distribution of top 10 and bottom 10 overdue customers; plot which customer have least and most overdue days; plot which store have most sales; plot average payment amount by month with mean and EWM; and plot payment amount over June 2005. PROJECT 3: ZERO TO MASTERY: THE COMPLETE GUIDE TO LEARNING SQL SERVER AND DATA SCIENCE WITH PYTHON GUI In this project, we provide you with a SQL SERVER version of an Oracle sample database named OT which is based on a global fictitious company that sells computer hardware including storage, motherboard, RAM, video card, and CPU. The company maintains the product information such as name, description standard cost, list price, and product line. It also tracks the inventory information for all products including warehouses where products are available. Because the company operates globally, it has warehouses in various locations around the world. The company records all customer information including name, address, and website. Each customer has at least one contact person with detailed information including name, email, and phone. The company also places a credit limit on each customer to limit the amount that customer can owe. Whenever a customer issues a purchase order, a sales order is created in the database with the pending status. When the company ships the order, the order status becomes shipped. In case the customer cancels an order, the order status becomes canceled. In addition to the sales information, the employee data is recorded with some basic information such as name, email, phone, job title, manager, and hire date. In this project, you will write Python script to create every table and insert rows of data into each of them. You will develop GUI with PyQt5 to each table in the database. You will also create GUI to plot: case distribution of order date by year, quarter, month, week, and day; the distribution of amount by year, quarter, month, week, day, and hour; the distribution of bottom 10 sales by product, top 10 sales by product, bottom 10 sales by customer, top 10 sales by customer, bottom 10 sales by category, top 10 sales by category, bottom 10 sales by status, top 10 sales by status, bottom 10 sales by customer city, top 10 sales by customer city, bottom 10 sales by customer state, top 10 sales by customer state, average amount by month with mean and EWM, average amount by every month, amount feature over June 2016, amount feature over 2017, and amount payment in all years.
PROJECT 1: RFM ANALYSIS AND K-MEANS CLUSTERING: A CASE STUDY ANALYSIS, CLUSTERING, AND PREDICTION ON RETAIL STORE TRANSACTIONS WITH PYTHON GUI The dataset used in this project is the detailed data on sales of consumer goods obtained by ‘scanning’ the bar codes for individual products at electronic points of sale in a retail store. The dataset provides detailed information about quantities, characteristics and values of goods sold as well as their prices. The anonymized dataset includes 64.682 transactions of 5.242 SKU's sold to 22.625 customers during one year. Dataset Attributes are as follows: Date of Sales Transaction, Customer ID, Transaction ID, SKU Category ID, SKU ID, Quantity Sold, and Sales Amount (Unit price times quantity. For unit price, please divide Sales Amount by Quantity). This dataset can be analyzed with RFM analysis and can be clustered using K-Means algorithm. The machine learning models used in this project to predict clusters as target variable are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, LGBM, Gradient Boosting, XGB, and MLP. Finally, you will plot boundary decision, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy. PROJECT 2: DATA SCIENCE FOR GROCERIES MARKET ANALYSIS, CLUSTERING, AND PREDICTION WITH PYTHON GUI RFM analysis used in this project can be used as a marketing technique used to quantitatively rank and group customers based on the recency, frequency and monetary total of their recent transactions to identify the best customers and perform targeted marketing campaigns. The idea is to segment customers based on when their last purchase was, how often they've purchased in the past, and how much they've spent overall. Clustering, in this case K-Means algorithm, used in this project can be used to place similar customers into mutually exclusive groups; these groups are known as “segments” while the act of grouping is known as segmentation. Segmentation allows businesses to identify the different types and preferences of customers/markets they serve. This is crucial information to have to develop highly effective marketing, product, and business strategies. The dataset in this project has 38765 rows of the purchase orders of people from the grocery stores. These orders can be analyzed with RFM analysis and can be clustered using K-Means algorithm. The machine learning models used in this project to predict clusters as target variable are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, LGBM, Gradient Boosting, XGB, and MLP. Finally, you will plot boundary decision, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy. PROJECT 3: ONLINE RETAIL CLUSTERING AND PREDICTION USING MACHINE LEARNING WITH PYTHON GUI The dataset used in this project is a transnational dataset which contains all the transactions occurring between 01/12/2010 and 09/12/2011 for a UK-based and registered non-store online retail. The company mainly sells unique all-occasion gifts. Many customers of the company are wholesalers. You will be using the online retail transnational dataset to build a RFM clustering and choose the best set of customers which the company should target. In this project, you will perform Cohort analysis and RFM analysis. You will also perform clustering using K-Means to get 5 clusters. The machine learning models used in this project to predict clusters as target variable are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, LGBM, Gradient Boosting, XGB, and MLP. Finally, you will plot boundary decision, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy.
PROJECT 1: FULL SOURCE CODE: POSTGRESQL AND DATA SCIENCE FOR PROGRAMMERS WITH PYTHON GUI This project uses the PostgreSQL version of MySQL-based Sakila sample database which is a fictitious database designed to represent a DVD rental store. The tables of the database include film, film_category, actor, film_actor, customer, rental, payment and inventory among others. You can download the database from https://dev.mysql.com/doc/sakila/en/. In this project, you will write Python script to create every table and insert rows of data into each of them. You will develop GUI with PyQt5 to each table in the database. You will also create GUI to plot case distribution of film release year, film rating, rental duration, and categorize film length; plot rating variable against rental_duration variable in stacked bar plots; plot length variable against rental_duration variable in stacked bar plots; read payment table; plot case distribution of Year, Day, Month, Week, and Quarter of payment; plot which year, month, week, days of week, and quarter have most payment amount; read film list by joining five tables: category, film_category, film_actor, film, and actor; plot case distribution of top 10 and bottom 10 actors; plot which film title have least and most sales; plot which actor have least and most sales; plot which film category have least and most sales; plot case distribution of top 10 and bottom 10 overdue costumers; plot which store have most sales; plot average payment amount by month with mean and EWM; and plot payment amount over June 2005. PROJECT 2: FULL SOURCE CODE: MYSQL FOR STUDENTS AND PROGRAMMERS WITH PYTHON GUI In this project, we provide you with a MySQL version of an Oracle sample database named OT which is based on a global fictitious company that sells computer hardware including storage, motherboard, RAM, video card, and CPU. The company maintains the product information such as name, description standard cost, list price, and product line. It also tracks the inventory information for all products including warehouses where products are available. Because the company operates globally, it has warehouses in various locations around the world. The company records all customer information including name, address, and website. Each customer has at least one contact person with detailed information including name, email, and phone. The company also places a credit limit on each customer to limit the amount that customer can owe. Whenever a customer issues a purchase order, a sales order is created in the database with the pending status. When the company ships the order, the order status becomes shipped. In case the customer cancels an order, the order status becomes canceled. In addition to the sales information, the employee data is recorded with some basic information such as name, email, phone, job title, manager, and hire date. In this project, you will write Python script to create every table and insert rows of data into each of them. You will develop GUI with PyQt5 to each table in the database. You will also create GUI to plot: case distribution of order date by year, quarter, month, week, and day; the distribution of amount by year, quarter, month, week, day, and hour; the distribution of bottom 10 sales by product, top 10 sales by product, bottom 10 sales by customer, top 10 sales by customer, bottom 10 sales by category, top 10 sales by category, bottom 10 sales by status, top 10 sales by status, bottom 10 sales by customer city, top 10 sales by customer city, bottom 10 sales by customer state, top 10 sales by customer state, average amount by month with mean and EWM, average amount by every month, amount feature over June 2016, amount feature over 2017, and amount payment in all years. PROJECT 3: ZERO TO MASTERY: THE COMPLETE GUIDE TO LEARNING SQLITE AND PYTHON GUI In this project, we provide you with the SQLite version of The Oracle Database Sample Schemas that provides a common platform for examples in each release of the Oracle Database. The sample database is also a good database for practicing with SQL, especially SQLite. The detailed description of the database can be found on: http://luna-ext.di.fc.ul.pt/oracle11g/server.112/e10831/diagrams.htm#insertedID0. The four schemas are a set of interlinked schemas. This set of schemas provides a layered approach to complexity: A simple schema Human Resources (HR) is useful for introducing basic topics. An extension to this schema supports Oracle Internet Directory demos; A second schema, Order Entry (OE), is useful for dealing with matters of intermediate complexity. Many data types are available in this schema, including non-scalar data types; The Online Catalog (OC) subschema is a collection of object-relational database objects built inside the OE schema; The Product Media (PM) schema is dedicated to multimedia data types; The Sales History (SH) schema is designed to allow for demos with large amounts of data. An extension to this schema provides support for advanced analytic processing. The HR schema consists of seven tables: regions, countries, locations, departments, employees, jobs, and job_histories. This book only implements HR schema, since the other schemas will be implemented in the next books. PROJECT 4: FULL SOURCE CODE: SQL SERVER FOR STUDENTS AND DATA SCIENTISTS WITH PYTHON GUI In this project, we provide you with the SQL SERVER version of SQLite sample database named chinook. The chinook sample database is a good database for practicing with SQL, especially PostgreSQL. The detailed description of the database can be found on: https://www.sqlitetutorial.net/sqlite-sample-database/. The sample database consists of 11 tables: The employee table stores employees data such as employee id, last name, first name, etc. It also has a field named ReportsTo to specify who reports to whom; customers table stores customers data; invoices & invoice_items tables: these two tables store invoice data. The invoice table stores invoice header data and the invoice_items table stores the invoice line items data; The artist table stores artists data. It is a simple table that contains only the artist id and name; The album table stores data about a list of tracks. Each album belongs to one artist. However, one artist may have multiple albums; The media_type table stores media types such as MPEG audio and AAC audio files; genre table stores music types such as rock, jazz, metal, etc; The track table stores the data of songs. Each track belongs to one album; playlist & playlist_track tables: The playlist table store data about playlists. Each playlist contains a list of tracks. Each track may belong to multiple playlists. The relationship between the playlist table and track table is many-to-many. The playlist_track table is used to reflect this relationship. In this project, you will write Python script to create every table and insert rows of data into each of them. You will develop GUI with PyQt5 to each table in the database. You will also create GUI to plot: case distribution of order date by year, quarter, month, week, and day; the distribution of amount by year, quarter, month, week, day, and hour; the bottom/top 10 sales by employee, the bottom/top 10 sales by customer, the bottom/top 10 sales by customer, the bottom/top 10 sales by artist, the bottom/top 10 sales by genre, the bottom/top 10 sales by play list, the bottom/top 10 sales by customer city, the bottom/top 10 sales by customer city, the bottom/top 10 sales by customer city, the payment amount by month with mean and EWM, the average payment amount by every month, and amount payment in all years.
PROJECT 1: TEXT PROCESSING AND SENTIMENT ANALYSIS USING MACHINE LEARNING AND DEEP LEARNING WITH PYTHON GUI Twitter data used in this project was scraped from February of 2015 and contributors were asked to first classify positive, negative, and neutral tweets, followed by categorizing negative reasons (such as "late flight" or "rude service"). This data was originally posted by Crowdflower last February and includes tweets about 6 major US airlines. Additionally, Crowdflower had their workers extract the sentiment from the tweet as well as what the passenger was dissapointed about if the tweet was negative. The information of main attributes for this project are as follows: airline_sentiment : Sentiment classification.(positivie, neutral, and negative); negativereason : Reason selected for the negative opinion; airline : Name of 6 US Airlines('Delta', 'United', 'Southwest', 'US Airways', 'Virgin America', 'American'); and text : Customer's opinion. The models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, and XGB classifier, and LSTM. Three vectorizers used in machine learning are Hashing Vectorizer, Count Vectorizer, and TFID Vectorizer. Finally, you will develop a GUI using PyQt5 to plot cross validation score, predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy. PROJECT 2: HOTEL REVIEW: SENTIMENT ANALYSIS USING MACHINE LEARNING AND DEEP LEARNING WITH PYTHON GUI The data used in this project is the data published by Anurag Sharma about hotel reviews that were given by costumers. The data is given in two files, a train and test. The train.csv is the training data, containing unique User_ID for each entry with the review entered by a costumer and the browser and device used. The target variable is Is_Response, a variable that states whether the costumers was happy or not happy while staying in the hotel. This type of variable makes the project to a classification problem. The test.csv is the testing data, contains similar headings as the train data, without the target variable. The models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, and XGB classifier, and LSTM. Three vectorizers used in machine learning are Hashing Vectorizer, Count Vectorizer, and TFID Vectorizer. Finally, you will develop a GUI using PyQt5 to plot cross validation score, predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy. PROJECT 3: STUDENT ACADEMIC PERFORMANCE ANALYSIS AND PREDICTION USING MACHINE LEARNING WITH PYTHON GUI The dataset used in this project consists of student achievement in secondary education of two Portuguese schools. The data attributes include student grades, demographic, social and school-related features) and it was collected by using school reports and questionnaires. Two datasets are provided regarding the performance in two distinct subjects: Mathematics (mat) and Portuguese language (por). In the two datasets were modeled under binary/five-level classification and regression tasks. Important note: the target attribute G3 has a strong correlation with attributes G2 and G1. This occurs because G3 is the final year grade (issued at the 3rd period), while G1 and G2 correspond to the 1st and 2nd period grades. It is more difficult to predict G3 without G2 and G1, but such prediction is much more useful. Attributes in the dataset are as follows: school - student's school (binary: 'GP' - Gabriel Pereira or 'MS' - Mousinho da Silveira); sex - student's sex (binary: 'F' - female or 'M' - male); age - student's age (numeric: from 15 to 22); address - student's home address type (binary: 'U' - urban or 'R' - rural); famsize - family size (binary: 'LE3' - less or equal to 3 or 'GT3' - greater than 3); Pstatus - parent's cohabitation status (binary: 'T' - living together or 'A' - apart); Medu - mother's education (numeric: 0 - none, 1 - primary education (4th grade), 2 - 5th to 9th grade, 3 - secondary education or 4 - higher education); Fedu - father's education (numeric: 0 - none, 1 - primary education (4th grade), 2 - 5th to 9th grade, 3 - secondary education or 4 - higher education); Mjob - mother's job (nominal: 'teacher', 'health' care related, civil 'services' (e.g. administrative or police), 'at_home' or 'other'); Fjob - father's job (nominal: 'teacher', 'health' care related, civil 'services' (e.g. administrative or police), 'at_home' or 'other'); reason - reason to choose this school (nominal: close to 'home', school 'reputation', 'course' preference or 'other'); guardian - student's guardian (nominal: 'mother', 'father' or 'other'); traveltime - home to school travel time (numeric: 1 - <15 min., 2 - 15 to 30 min., 3 - 30 min. to 1 hour, or 4 - >1 hour); studytime - weekly study time (numeric: 1 - <2 hours, 2 - 2 to 5 hours, 3 - 5 to 10 hours, or 4 - >10 hours); failures - number of past class failures (numeric: n if 1<=n<3, else 4); schoolsup - extra educational support (binary: yes or no); famsup - family educational support (binary: yes or no); paid - extra paid classes within the course subject (Math or Portuguese) (binary: yes or no); activities - extra-curricular activities (binary: yes or no); nursery - attended nursery school (binary: yes or no); higher - wants to take higher education (binary: yes or no); internet - Internet access at home (binary: yes or no); romantic - with a romantic relationship (binary: yes or no); famrel - quality of family relationships (numeric: from 1 - very bad to 5 - excellent); freetime - free time after school (numeric: from 1 - very low to 5 - very high); goout - going out with friends (numeric: from 1 - very low to 5 - very high); Dalc - workday alcohol consumption (numeric: from 1 - very low to 5 - very high); Walc - weekend alcohol consumption (numeric: from 1 - very low to 5 - very high); health - current health status (numeric: from 1 - very bad to 5 - very good); absences - number of school absences (numeric: from 0 to 93); G1 - first period grade (numeric: from 0 to 20); G2 - second period grade (numeric: from 0 to 20); and G3 - final grade (numeric: from 0 to 20, output target). The models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, and XGB classifier. Three feature scaling used in machine learning are raw, minmax scaler, and standard scaler. Finally, you will develop a GUI using PyQt5 to plot cross validation score, predicted values versus true values, confusion matrix, learning curve, decision boundaries, performance of the model, scalability of the model, training loss, and training accuracy.
PROJECT 1: MYSQL FOR DATA ANALYSIS AND VISUALIZATION WITH PYTHON GUI In this project, you will use the Northwind database which is a sample database that was originally created by Microsoft and used as the basis for their tutorials in a variety of database products for decades. The Northwind database contains the sales data for a fictitious company called “Northwind Traders,” which imports and exports specialty foods from around the world. The Northwind database is an excellent tutorial schema for a small-business ERP, with customers, orders, inventory, purchasing, suppliers, shipping, employees, and single-entry accounting. The Northwind dataset includes sample data for the following: Suppliers: Suppliers and vendors of Northwind; Customers: Customers who buy products from Northwind; Employees: Employee details of Northwind traders; Products: Product information; Shippers: The details of the shippers who ship the products from the traders to the end-customers; Orders and Order_Details: Sales Order transactions taking place between the customers & the company. The Northwind sample database includes 11 tables and the table relationships are showcased in the following entity relationship diagram. In this project, you will write Python script to create every table and insert rows of data into each of them. You will develop GUI with PyQt5 to each table in the database. You will also create GUI to plot: case distribution of order date by year, quarter, month, week, day, and hour; the distribution of amount by year, quarter, month, week, day, and hour; the distribution of bottom 10 sales by product, top 10 sales by product, bottom 10 sales by customer, top 10 sales by customer, bottom 10 sales by supplier, top 10 sales by supplier, bottom 10 sales by customer country, top 10 sales by customer country, bottom 10 sales by supplier country, top 10 sales by supplier country, average amount by month with mean and ewm, average amount by every month, amount feature over june 1997, amount feature over 1998, and all amount feature. PROJECT 2: FULL SOURCE CODE: THE COMPLETE GUIDE TO LEARNING POSTGRESQL AND DATA SCIENCE WITH PYTHON GUI In this project, we provide you with the PostgreSQL version of SQLite sample database named chinook. The chinook sample database is a good database for practicing with SQL, especially PostgreSQL. The detailed description of the database can be found on: https://www.sqlitetutorial.net/sqlite-sample-database/. The sample database consists of 11 tables: The employee table stores employees data such as employee id, last name, first name, etc. It also has a field named ReportsTo to specify who reports to whom; customers table stores customers data; invoices & invoice_items tables: these two tables store invoice data. The invoice table stores invoice header data and the invoice_items table stores the invoice line items data; The artist table stores artists data. It is a simple table that contains only the artist id and name; The album table stores data about a list of tracks. Each album belongs to one artist. However, one artist may have multiple albums; The media_type table stores media types such as MPEG audio and AAC audio files; genre table stores music types such as rock, jazz, metal, etc; The track table stores the data of songs. Each track belongs to one album; playlist & playlist_track tables: The playlist table store data about playlists. Each playlist contains a list of tracks. Each track may belong to multiple playlists. The relationship between the playlist table and track table is many-to-many. The playlist_track table is used to reflect this relationship. In this project, you will write Python script to create every table and insert rows of data into each of them. You will develop GUI with PyQt5 to each table in the database. You will also create GUI to plot: case distribution of order date by year, quarter, month, week, and day; the distribution of amount by year, quarter, month, week, day, and hour; the bottom/top 10 sales by employee, the bottom/top 10 sales by customer, the bottom/top 10 sales by customer, the bottom/top 10 sales by artist, the bottom/top 10 sales by genre, the bottom/top 10 sales by play list, the bottom/top 10 sales by customer city, the bottom/top 10 sales by customer city, the bottom/top 10 sales by customer city, the payment amount by month with mean and EWM, the average payment amount by every month, and amount payment in all years. PROJECT 3: FULL SOURCE CODE: SQL SERVER FOR DATA ANALYTICS AND VISUALIZATION WITH PYTHON GUI This book uses SQL SERVER version of MySQL-based Sakila sample database. It is a fictitious database designed to represent a DVD rental store. The tables of the database include film, film_category, actor, customer, rental, payment and inventory among others. The Sakila sample database is intended to provide a standard schema that can be used for examples in books, tutorials, articles, samples, and so forth. Detailed information about the database can be found on website: https://dev.mysql.com/doc/index-other.html. In this project, you will develop GUI using PyQt5 to: read SQL SERVER database and every table in it; read every actor in actor table, read every film in films table; plot case distribution of film release year, film rating, rental duration, and categorize film length; plot rating variable against rental_duration variable in stacked bar plots; plot length variable against rental_duration variable in stacked bar plots; read payment table; plot case distribution of Year, Day, Month, Week, and Quarter of payment; plot which year, month, week, days of week, and quarter have most payment amount; read film list by joining five tables: category, film_category, film_actor, film, and actor; plot case distribution of top 10 and bottom 10 actors; plot which film title have least and most sales; plot which actor have least and most sales; plot which film category have least and most sales; plot case distribution of top 10 and bottom 10 overdue customers; plot which customer have least and most overdue days; plot which store have most sales; plot average payment amount by month with mean and EWM; and plot payment amount over June 2005. PROJECT 4: SQLITE FOR DATA ANALYSIS AND VISUALIZATION WITH PYTHON GUI In this project, you will use SQLite version of Northwind database which is a sample database that was originally created by Microsoft and used as the basis for their tutorials in a variety of database products for decades. The Northwind database contains the sales data for a fictitious company called “Northwind Traders,” which imports and exports specialty foods from around the world. The Northwind database is an excellent tutorial schema for a small-business ERP, with customers, orders, inventory, purchasing, suppliers, shipping, employees, and single-entry accounting. The Northwind dataset includes sample data for the following: Suppliers: Suppliers and vendors of Northwind; Customers: Customers who buy products from Northwind; Employees: Employee details of Northwind traders; Products: Product information; Shippers: The details of the shippers who ship the products from the traders to the end-customers; Orders and Order_Details: Sales Order transactions taking place between the customers & the company. The Northwind sample database includes 11 tables and the table relationships are showcased in the following entity relationship diagram. In this project, you will write Python script to create every table and insert rows of data into each of them. You will develop GUI with PyQt5 to each table in the SQLite database. You will also create GUI to plot: case distribution of order date by year, quarter, month, week, day, and hour; the distribution of amount by year, quarter, month, week, day, and hour; the distribution of bottom 10 sales by product, top 10 sales by product, bottom 10 sales by customer, top 10 sales by customer, bottom 10 sales by supplier, top 10 sales by supplier, bottom 10 sales by customer country, top 10 sales by customer country, bottom 10 sales by supplier country, top 10 sales by supplier country, average amount by month with mean and ewm, average amount by every month, amount feature over June 1997, amount feature over 1998, and all amount feature.
PROJECT 1: FULL SOURCE CODE: MYSQL FOR STUDENTS AND PROGRAMMERS WITH PYTHON GUI In this project, we provide you with a MySQL version of an Oracle sample database named OT which is based on a global fictitious company that sells computer hardware including storage, motherboard, RAM, video card, and CPU. The company maintains the product information such as name, description standard cost, list price, and product line. It also tracks the inventory information for all products including warehouses where products are available. Because the company operates globally, it has warehouses in various locations around the world. The company records all customer information including name, address, and website. Each customer has at least one contact person with detailed information including name, email, and phone. The company also places a credit limit on each customer to limit the amount that customer can owe. Whenever a customer issues a purchase order, a sales order is created in the database with the pending status. When the company ships the order, the order status becomes shipped. In case the customer cancels an order, the order status becomes canceled. In addition to the sales information, the employee data is recorded with some basic information such as name, email, phone, job title, manager, and hire date. In this project, you will write Python script to create every table and insert rows of data into each of them. You will develop GUI with PyQt5 to each table in the database. You will also create GUI to plot: case distribution of order date by year, quarter, month, week, and day; the distribution of amount by year, quarter, month, week, day, and hour; the distribution of bottom 10 sales by product, top 10 sales by product, bottom 10 sales by customer, top 10 sales by customer, bottom 10 sales by category, top 10 sales by category, bottom 10 sales by status, top 10 sales by status, bottom 10 sales by customer city, top 10 sales by customer city, bottom 10 sales by customer state, top 10 sales by customer state, average amount by month with mean and EWM, average amount by every month, amount feature over June 2016, amount feature over 2017, and amount payment in all years. PROJECT 2: MYSQL FOR DATA ANALYST AND DATA SCIENTIST WITH PYTHON GUI In this project, we will use the BikeStores database as a MySQL sample database to help you work with MySQL quickly and effectively. The stores table includes the store’s information. Each store has a store name, contact information such as phone and email, and an address including street, city, state, and zip code. The staffs table stores the essential information of staffs including first name, last name. It also contains the communication information such as email and phone. A staff works at a store specified by the value in the store_id column. A store can have one or more staffs. A staff reports to a store manager specified by the value in the manager_id column. If the value in the manager_id is null, then the staff is the top manager. If a staff no longer works for any stores, the value in the active column is set to zero. The categories table stores the bike’s categories such as children bicycles, comfort bicycles, and electric bikes. The products table stores the product’s information such as name, brand, category, model year, and list price. Each product belongs to a brand specified by the brand_id column. Hence, a brand may have zero or many products. Each product also belongs a category specified by the category_id column. Also, each category may have zero or many products. The customers table stores customer’s information including first name, last name, phone, email, street, city, state, zip code, and photo path. The orders table stores the sales order’s header information including customer, order status, order date, required date, shipped date. It also stores the information on where the sales transaction was created (store) and who created it (staff). Each sales order has a row in the sales_orders table. A sales order has one or many line items stored in the order_items table. The order_items table stores the line items of a sales order. Each line item belongs to a sales order specified by the order_id column. A sales order line item includes product, order quantity, list price, and discount. The stocks table stores the inventory information i.e. the quantity of a particular product in a specific store. In this project, you will write Python script to create every table and insert rows of data into each of them. You will develop GUI with PyQt5 to each table in the database. You will also create GUI to plot: case distribution of order date by year, quarter, month, week, day, and hour; the distribution of amount by year, quarter, month, week, day, and hour; the distribution of bottom 10 sales by product, top 10 sales by product, bottom 10 sales by customer, top 10 sales by customer, bottom 10 sales by category, top 10 sales by category, bottom 10 sales by brand, top 10 sales by brand, bottom 10 sales by customer city, top 10 sales by customer city, bottom 10 sales by customer state, top 10 sales by customer state, average amount by month with mean and EWM, average amount by every month, amount feature over June 2017, amount feature over 2018, and all amount feature. PROJECT 3: MYSQL FOR DATA ANALYSIS AND VISUALIZATION WITH PYTHON GUI In this project, you will use the Northwind database which is a sample database that was originally created by Microsoft and used as the basis for their tutorials in a variety of database products for decades. The Northwind database contains the sales data for a fictitious company called “Northwind Traders,” which imports and exports specialty foods from around the world. The Northwind database is an excellent tutorial schema for a small-business ERP, with customers, orders, inventory, purchasing, suppliers, shipping, employees, and single-entry accounting. The Northwind dataset includes sample data for the following: Suppliers: Suppliers and vendors of Northwind; Customers: Customers who buy products from Northwind; Employees: Employee details of Northwind traders; Products: Product information; Shippers: The details of the shippers who ship the products from the traders to the end-customers; Orders and Order_Details: Sales Order transactions taking place between the customers & the company. The Northwind sample database includes 11 tables and the table relationships are showcased in the following entity relationship diagram. In this project, you will write Python script to create every table and insert rows of data into each of them. You will develop GUI with PyQt5 to each table in the database. You will also create GUI to plot: case distribution of order date by year, quarter, month, week, day, and hour; the distribution of amount by year, quarter, month, week, day, and hour; the distribution of bottom 10 sales by product, top 10 sales by product, bottom 10 sales by customer, top 10 sales by customer, bottom 10 sales by supplier, top 10 sales by supplier, bottom 10 sales by customer country, top 10 sales by customer country, bottom 10 sales by supplier country, top 10 sales by supplier country, average amount by month with mean and ewm, average amount by every month, amount feature over june 1997, amount feature over 1998, and all amount feature. PROJECT 4: MYSQL AND DATA SCIENCE: QUERIES AND VISUALIZATION WITH PYTHON GUI In this project, you will write Python script to create every table and insert rows of data into each of them. You will develop GUI with PyQt5 to each table in the database. You will also create GUI to plot case distribution of film release year, film rating, rental duration, and categorize film length; plot rating variable against rental_duration variable in stacked bar plots; plot length variable against rental_duration variable in stacked bar plots; read payment table; plot case distribution of Year, Day, Month, Week, and Quarter of payment; plot which year, month, week, days of week, and quarter have most payment amount; read film list by joining five tables: category, film_category, film_actor, film, and actor; plot case distribution of top 10 and bottom 10 actors; plot which film title have least and most sales; plot which actor have least and most sales; plot which film category have least and most sales; plot case distribution of top 10 and bottom 10 overdue costumers; plot which customer have least and most overdue days; plot which store have most sales; plot average payment amount by month with mean and EWM; and plot payment amount over June 2005. This project uses the Sakila sample database which is a fictitious database designed to represent a DVD rental store. The tables of the database include film, film_category, actor, film_actor, customer, rental, payment and inventory among others. You can download the MySQL from https://dev.mysql.com/doc/sakila/en/.
PROJECT 1: SQLITE AND DATA SCIENCE: QUERIES AND VISUALIZATION WITH PYTHON GUI In this project, you will develop GUI with PyQt5 to: utilize Push Button, Combo Box, Table Widget, Line Edit, and Widget, read and create SQLite database and every table in it, plot case distribution of film release year, film rating, rental duration, and categorize film length; plot rating variable against rental_duration variable in stacked bar plots; plot length variable against rental_duration variable in stacked bar plots; read payment table; plot case distribution of Year, Day, Month, Week, and Quarter of payment; plot which year, month, week, days of week, and quarter have most payment amount; read film list by joining five tables: category, film_category, film_actor, film, and actor; plot case distribution of top 10 and bottom 10 actors; plot which film title have least and most sales; plot which actor have least and most sales; plot which film category have least and most sales; plot case distribution of top 10 and bottom 10 overdue costumers; plot which customer have least and most overdue days; plot which store have most sales; plot average payment amount by month with mean and EWM; and plot payment amount over June 2005. This project uses the Sakila sample database which is a fictitious database designed to represent a DVD rental store. The tables of the database include film, film_category, actor, film_actor, customer, rental, payment and inventory among others. You can download the SQLite from https://dev.mysql.com/doc/sakila/en/. PROJECT 2: MYSQL AND DATA SCIENCE: QUERIES AND VISUALIZATION WITH PYTHON GUI In this project, you will write Python script to create every table and insert rows of data into each of them. You will develop GUI with PyQt5 to each table in the database. You will also create GUI to plot case distribution of film release year, film rating, rental duration, and categorize film length; plot rating variable against rental_duration variable in stacked bar plots; plot length variable against rental_duration variable in stacked bar plots; read payment table; plot case distribution of Year, Day, Month, Week, and Quarter of payment; plot which year, month, week, days of week, and quarter have most payment amount; read film list by joining five tables: category, film_category, film_actor, film, and actor; plot case distribution of top 10 and bottom 10 actors; plot which film title have least and most sales; plot which actor have least and most sales; plot which film category have least and most sales; plot case distribution of top 10 and bottom 10 overdue costumers; plot which customer have least and most overdue days; plot which store have most sales; plot average payment amount by month with mean and EWM; and plot payment amount over June 2005. This project uses the Sakila sample database which is a fictitious database designed to represent a DVD rental store. The tables of the database include film, film_category, actor, film_actor, customer, rental, payment and inventory among others. You can download the MySQL from https://dev.mysql.com/doc/sakila/en/. PROJECT 3: MYSQL FOR DATA ANALYSIS AND VISUALIZATION WITH PYTHON GUI In this project, you will use the Northwind database which is a sample database that was originally created by Microsoft and used as the basis for their tutorials in a variety of database products for decades. The Northwind database contains the sales data for a fictitious company called “Northwind Traders,” which imports and exports specialty foods from around the world. The Northwind database is an excellent tutorial schema for a small-business ERP, with customers, orders, inventory, purchasing, suppliers, shipping, employees, and single-entry accounting. The Northwind dataset includes sample data for the following: Suppliers: Suppliers and vendors of Northwind; Customers: Customers who buy products from Northwind; Employees: Employee details of Northwind traders; Products: Product information; Shippers: The details of the shippers who ship the products from the traders to the end-customers; Orders and Order_Details: Sales Order transactions taking place between the customers & the company. The Northwind sample database includes 11 tables and the table relationships are showcased in the following entity relationship diagram. In this project, you will write Python script to create every table and insert rows of data into each of them. You will develop GUI with PyQt5 to each table in the database. You will also create GUI to plot: case distribution of order date by year, quarter, month, week, day, and hour; the distribution of amount by year, quarter, month, week, day, and hour; the distribution of bottom 10 sales by product, top 10 sales by product, bottom 10 sales by customer, top 10 sales by customer, bottom 10 sales by supplier, top 10 sales by supplier, bottom 10 sales by customer country, top 10 sales by customer country, bottom 10 sales by supplier country, top 10 sales by supplier country, average amount by month with mean and ewm, average amount by every month, amount feature over June 1997, amount feature over 1998, and all amount feature. PROJECT 4: SQLITE FOR DATA ANALYSIS AND VISUALIZATION WITH PYTHON GUI In this project, you will use SQLite version of Northwind database which is a sample database that was originally created by Microsoft and used as the basis for their tutorials in a variety of database products for decades. The Northwind database contains the sales data for a fictitious company called “Northwind Traders,” which imports and exports specialty foods from around the world. The Northwind database is an excellent tutorial schema for a small-business ERP, with customers, orders, inventory, purchasing, suppliers, shipping, employees, and single-entry accounting. The Northwind dataset includes sample data for the following: Suppliers: Suppliers and vendors of Northwind; Customers: Customers who buy products from Northwind; Employees: Employee details of Northwind traders; Products: Product information; Shippers: The details of the shippers who ship the products from the traders to the end-customers; Orders and Order_Details: Sales Order transactions taking place between the customers & the company. The Northwind sample database includes 11 tables and the table relationships are showcased in the following entity relationship diagram. In this project, you will write Python script to create every table and insert rows of data into each of them. You will develop GUI with PyQt5 to each table in the SQLite database. You will also create GUI to plot: case distribution of order date by year, quarter, month, week, day, and hour; the distribution of amount by year, quarter, month, week, day, and hour; the distribution of bottom 10 sales by product, top 10 sales by product, bottom 10 sales by customer, top 10 sales by customer, bottom 10 sales by supplier, top 10 sales by supplier, bottom 10 sales by customer country, top 10 sales by customer country, bottom 10 sales by supplier country, top 10 sales by supplier country, average amount by month with mean and ewm, average amount by every month, amount feature over June 1997, amount feature over 1998, and all amount feature.
PROJECT 1: ZERO TO MASTERY: THE COMPLETE GUIDE TO LEARNING POSTGRESQL WITH PYTHON GUI This book uses the PostgreSQL version of MySQL-based Northwind database. The Northwind database is a sample database that was originally created by Microsoft and used as the basis for their tutorials in a variety of database products for decades. The Northwind database contains the sales data for a fictitious company called “Northwind Traders,” which imports and exports specialty foods from around the world. The Northwind database is an excellent tutorial schema for a small-business ERP, with customers, orders, inventory, purchasing, suppliers, shipping, employees, and single-entry accounting. The Northwind database has since been ported to a variety of non-Microsoft databases, including PostgreSQL. The Northwind dataset includes sample data for the following: Suppliers: Suppliers and vendors of Northwind; Customers: Customers who buy products from Northwind; Employees: Employee details of Northwind traders; Products: Product information; Shippers: The details of the shippers who ship the products from the traders to the end-customers; and Orders and Order_Details: Sales Order transactions taking place between the customers & the company. In this project, you will write Python script to create every table and insert rows of data into each of them. You will develop GUI with PyQt5 to each table in the database. You will also create GUI to plot: case distribution of order date by year, quarter, month, week, day, and hour; the distribution of amount by year, quarter, month, week, day, and hour; the distribution of bottom 10 sales by product, top 10 sales by product, bottom 10 sales by customer, top 10 sales by customer, bottom 10 sales by supplier, top 10 sales by supplier, bottom 10 sales by customer country, top 10 sales by customer country, bottom 10 sales by supplier country, top 10 sales by supplier country, average amount by month with mean and ewm, average amount by every month, amount feature over June 1997, amount feature over 1998, and all amount feature. PROJECT 2: FULL SOURCE CODE: POSTGRESQL AND DATA SCIENCE FOR PROGRAMMERS WITH PYTHON GUI This project uses the PostgreSQL version of MySQL-based Sakila sample database which is a fictitious database designed to represent a DVD rental store. The tables of the database include film, film_category, actor, film_actor, customer, rental, payment and inventory among others. You can download the database from https://dev.mysql.com/doc/sakila/en/. In this project, you will write Python script to create every table and insert rows of data into each of them. You will develop GUI with PyQt5 to each table in the database. You will also create GUI to plot case distribution of film release year, film rating, rental duration, and categorize film length; plot rating variable against rental_duration variable in stacked bar plots; plot length variable against rental_duration variable in stacked bar plots; read payment table; plot case distribution of Year, Day, Month, Week, and Quarter of payment; plot which year, month, week, days of week, and quarter have most payment amount; read film list by joining five tables: category, film_category, film_actor, film, and actor; plot case distribution of top 10 and bottom 10 actors; plot which film title have least and most sales; plot which actor have least and most sales; plot which film category have least and most sales; plot case distribution of top 10 and bottom 10 overdue costumers; plot which store have most sales; plot average payment amount by month with mean and EWM; and plot payment amount over June 2005. PROJECT 3: FULL SOURCE CODE: POSTGRESQL FOR DATA ANALYTICS AND VISUALIZATION WITH PYTHON GUI In this project, we provide you with a PostgreSQL version of an Oracle sample database named OT which is based on a global fictitious company that sells computer hardware including storage, motherboard, RAM, video card, and CPU. The company maintains the product information such as name, description standard cost, list price, and product line. It also tracks the inventory information for all products including warehouses where products are available. Because the company operates globally, it has warehouses in various locations around the world. The company records all customer information including name, address, and website. Each customer has at least one contact person with detailed information including name, email, and phone. The company also places a credit limit on each customer to limit the amount that customer can owe. Whenever a customer issues a purchase order, a sales order is created in the database with the pending status. When the company ships the order, the order status becomes shipped. In case the customer cancels an order, the order status becomes canceled. In addition to the sales information, the employee data is recorded with some basic information such as name, email, phone, job title, manager, and hire date. In this project, you will write Python script to create every table and insert rows of data into each of them. You will develop GUI with PyQt5 to each table in the database. You will also create GUI to plot: case distribution of order date by year, quarter, month, week, and day; the distribution of amount by year, quarter, month, week, day, and hour; the distribution of bottom 10 sales by product, top 10 sales by product, bottom 10 sales by customer, top 10 sales by customer, bottom 10 sales by category, top 10 sales by category, bottom 10 sales by status, top 10 sales by status, bottom 10 sales by customer city, top 10 sales by customer city, bottom 10 sales by customer state, top 10 sales by customer state, average amount by month with mean and EWM, average amount by every month, amount feature over June 2016, amount feature over 2017, and amount payment in all years. PROJECT 4: FULL SOURCE CODE: POSTGRESQL FOR DATA SCIENTISTS AND DATA ANALYSTS WITH PYTHON GUI In this project, we will use the PostgreSQL version of SQL Server based BikeStores as a sample database to help you work with PostgreSQL quickly and effectively. The detailed structure of database can be found at: https://www.sqlservertutorial.net/sql-server-sample-database/. The stores table includes the store’s information. Each store has a store name, contact information such as phone and email, and an address including street, city, state, and zip code. The staffs table stores the essential information of staffs including first name, last name. It also contains the communication information such as email and phone. A staff works at a store specified by the value in the store_id column. A store can have one or more staffs. A staff reports to a store manager specified by the value in the manager_id column. If the value in the manager_id is null, then the staff is the top manager. If a staff no longer works for any stores, the value in the active column is set to zero. The categories table stores the bike’s categories such as children bicycles, comfort bicycles, and electric bikes. The products table stores the product’s information such as name, brand, category, model year, and list price. Each product belongs to a brand specified by the brand_id column. Hence, a brand may have zero or many products. Each product also belongs a category specified by the category_id column. Also, each category may have zero or many products. The customers table stores customer’s information including first name, last name, phone, email, street, city, state, zip code, and photo path. The orders table stores the sales order’s header information including customer, order status, order date, required date, shipped date. It also stores the information on where the sales transaction was created (store) and who created it (staff). Each sales order has a row in the sales_orders table. A sales order has one or many line items stored in the order_items table. The order_items table stores the line items of a sales order. Each line item belongs to a sales order specified by the order_id column. A sales order line item includes product, order quantity, list price, and discount. The stocks table stores the inventory information i.e. the quantity of a particular product in a specific store. In this project, you will write Python script to create every table and insert rows of data into each of them. You will develop GUI with PyQt5 to each table in the database. You will also create GUI to plot: case distribution of order date by year, quarter, month, week, day, and hour; the distribution of amount by year, quarter, month, week, day, and hour; the distribution of bottom 10 sales by product, top 10 sales by product, bottom 10 sales by customer, top 10 sales by customer, bottom 10 sales by category, top 10 sales by category, bottom 10 sales by brand, top 10 sales by brand, bottom 10 sales by customer city, top 10 sales by customer city, bottom 10 sales by customer state, top 10 sales by customer state, average amount by month with mean and EWM, average amount by every month, amount feature over June 2017, amount feature over 2018, and all amount feature. PROJECT 5: FULL SOURCE CODE: THE COMPLETE GUIDE TO LEARNING POSTGRESQL AND DATA SCIENCE WITH PYTHON GUI In this project, we provide you with the PostgreSQL version of SQLite sample database named chinook. The chinook sample database is a good database for practicing with SQL, especially PostgreSQL. The detailed description of the database can be found on: https://www.sqlitetutorial.net/sqlite-sample-database/. The sample database consists of 11 tables: The employee table stores employees data such as employee id, last name, first name, etc. It also has a field named ReportsTo to specify who reports to whom; customers table stores customers data; invoices & invoice_items tables: these two tables store invoice data. The invoice table stores invoice header data and the invoice_items table stores the invoice line items data; The artist table stores artists data. It is a simple table that contains only the artist id and name; The album table stores data about a list of tracks. Each album belongs to one artist. However, one artist may have multiple albums; The media_type table stores media types such as MPEG audio and AAC audio files; genre table stores music types such as rock, jazz, metal, etc; The track table stores the data of songs. Each track belongs to one album; playlist & playlist_track tables: The playlist table store data about playlists. Each playlist contains a list of tracks. Each track may belong to multiple playlists. The relationship between the playlist table and track table is many-to-many. The playlist_track table is used to reflect this relationship. In this project, you will write Python script to create every table and insert rows of data into each of them. You will develop GUI with PyQt5 to each table in the database. You will also create GUI to plot: case distribution of order date by year, quarter, month, week, and day; the distribution of amount by year, quarter, month, week, day, and hour; the bottom/top 10 sales by employee, the bottom/top 10 sales by customer, the bottom/top 10 sales by customer, the bottom/top 10 sales by artist, the bottom/top 10 sales by genre, the bottom/top 10 sales by play list, the bottom/top 10 sales by customer city, the bottom/top 10 sales by customer city, the bottom/top 10 sales by customer city, the payment amount by month with mean and EWM, the average payment amount by every month, and amount payment in all years.
PROJECT 1: FULL SOURCE CODE: PRACTICAL DATA SCIENCE WITH SQLITE AND PYTHON GUI In this project, we provide you with the SQLite sample database named chinook. The chinook sample database is a good database for practicing with SQL, especially SQLite. The detailed description of the database can be found on: https://www.sqlitetutorial.net/sqlite-sample-database/. There are 11 tables in the chinook sample database:The employee table stores employees data such as employee id, last name, first name, etc. It also has a field named ReportsTo to specify who reports to whom; customers table stores customers data; invoices & invoice_items tables: these two tables store invoice data. The invoice table stores invoice header data and the invoice_items table stores the invoice line items data; The artist table stores artists data. It is a simple table that contains only the artist id and name; The album table stores data about a list of tracks. Each album belongs to one artist. However, one artist may have multiple albums; The media_type table stores media types such as MPEG audio and AAC audio files; genre table stores music types such as rock, jazz, metal, etc; The track table stores the data of songs. Each track belongs to one album; playlist & playlist_track tables: The playlist table store data about playlists. Each playlist contains a list of tracks. Each track may belong to multiple playlists. The relationship between the playlist table and track table is many-to-many. The playlist_track table is used to reflect this relationship. In this project, you will write Python script to create every table and insert rows of data into each of them. You will develop GUI with PyQt5 to each table in the database. You will also create GUI to plot: case distribution of order date by year, quarter, month, week, and day; the distribution of amount by year, quarter, month, week, day, and hour; the bottom/top 10 sales by employee, the bottom/top 10 sales by customer, the bottom/top 10 sales by customer, the bottom/top 10 sales by artist, the bottom/top 10 sales by genre, the bottom/top 10 sales by play list, the bottom/top 10 sales by customer city, the bottom/top 10 sales by customer city, the bottom/top 10 sales by customer city, the payment amount by month with mean and EWM, the average payment amount by every month, and amount payment in all years. PROJECT 2: FULL SOURCE CODE: SQLITE FOR STUDENTS AND PROGRAMMERS WITH PYTHON GUI In this project, we provide you with a SQLITE version of an Oracle sample database named OT which is based on a global fictitious company that sells computer hardware including storage, motherboard, RAM, video card, and CPU. You can find the detailed structures of the database: https://www.oracletutorial.com/getting-started/oracle-sample-database/. The company maintains the product information such as name, description standard cost, list price, and product line. It also tracks the inventory information for all products including warehouses where products are available. Because the company operates globally, it has warehouses in various locations around the world. The company records all customer information including name, address, and website. Each customer has at least one contact person with detailed information including name, email, and phone. The company also places a credit limit on each customer to limit the amount that customer can owe. Whenever a customer issues a purchase order, a sales order is created in the database with the pending status. When the company ships the order, the order status becomes shipped. In case the customer cancels an order, the order status becomes canceled. In addition to the sales information, the employee data is recorded with some basic information such as name, email, phone, job title, manager, and hire date. In this project, you will write Python script to create every table and insert rows of data into each of them. You will develop GUI with PyQt5 to each table in the database. You will also create GUI to plot: case distribution of order date by year, quarter, month, week, and day; the distribution of amount by year, quarter, month, week, day, and hour; the distribution of bottom 10 sales by product, top 10 sales by product, bottom 10 sales by customer, top 10 sales by customer, bottom 10 sales by category, top 10 sales by category, bottom 10 sales by status, top 10 sales by status, bottom 10 sales by customer city, top 10 sales by customer city, bottom 10 sales by customer state, top 10 sales by customer state, average amount by month with mean and EWM, average amount by every month, amount feature over June 2016, amount feature over 2017, and amount payment in all years. PROJECT 3: SQLITE FOR DATA ANALYST AND DATA SCIENTIST WITH PYTHON GUI In this project, we will use the SQLite version of BikeStores database as a sample database to help you work with MySQL quickly and effectively. The stores table includes the store’s information. Each store has a store name, contact information such as phone and email, and an address including street, city, state, and zip code. The staffs table stores the essential information of staffs including first name, last name. It also contains the communication information such as email and phone. A staff works at a store specified by the value in the store_id column. A store can have one or more staffs. A staff reports to a store manager specified by the value in the manager_id column. If the value in the manager_id is null, then the staff is the top manager. If a staff no longer works for any stores, the value in the active column is set to zero. The categories table stores the bike’s categories such as children bicycles, comfort bicycles, and electric bikes. The products table stores the product’s information such as name, brand, category, model year, and list price. Each product belongs to a brand specified by the brand_id column. Hence, a brand may have zero or many products. Each product also belongs a category specified by the category_id column. Also, each category may have zero or many products. The customers table stores customer’s information including first name, last name, phone, email, street, city, state, zip code, and photo path. The orders table stores the sales order’s header information including customer, order status, order date, required date, shipped date. It also stores the information on where the sales transaction was created (store) and who created it (staff). Each sales order has a row in the sales_orders table. A sales order has one or many line items stored in the order_items table. The order_items table stores the line items of a sales order. Each line item belongs to a sales order specified by the order_id column. A sales order line item includes product, order quantity, list price, and discount. The stocks table stores the inventory information i.e. the quantity of a particular product in a specific store. In this project, you will write Python script to create every table and insert rows of data into each of them. You will develop GUI with PyQt5 to each table in the database. You will also create GUI to plot: case distribution of order date by year, quarter, month, week, day, and hour; the distribution of amount by year, quarter, month, week, day, and hour; the distribution of bottom 10 sales by product, top 10 sales by product, bottom 10 sales by customer, top 10 sales by customer, bottom 10 sales by category, top 10 sales by category, bottom 10 sales by brand, top 10 sales by brand, bottom 10 sales by customer city, top 10 sales by customer city, bottom 10 sales by customer state, top 10 sales by customer state, average amount by month with mean and EWM, average amount by every month, amount feature over June 2017, amount feature over 2018, and all amount feature. PROJECT 4: SQLITE FOR DATA ANALYSIS AND VISUALIZATION WITH PYTHON GUI In this project, you will use SQLite version of Northwind database which is a sample database that was originally created by Microsoft and used as the basis for their tutorials in a variety of database products for decades. The Northwind database contains the sales data for a fictitious company called “Northwind Traders,” which imports and exports specialty foods from around the world. The Northwind database is an excellent tutorial schema for a small-business ERP, with customers, orders, inventory, purchasing, suppliers, shipping, employees, and single-entry accounting. The Northwind dataset includes sample data for the following: Suppliers: Suppliers and vendors of Northwind; Customers: Customers who buy products from Northwind; Employees: Employee details of Northwind traders; Products: Product information; Shippers: The details of the shippers who ship the products from the traders to the end-customers; Orders and Order_Details: Sales Order transactions taking place between the customers & the company. The Northwind sample database includes 11 tables and the table relationships are showcased in the following entity relationship diagram. In this project, you will write Python script to create every table and insert rows of data into each of them. You will develop GUI with PyQt5 to each table in the SQLite database. You will also create GUI to plot: case distribution of order date by year, quarter, month, week, day, and hour; the distribution of amount by year, quarter, month, week, day, and hour; the distribution of bottom 10 sales by product, top 10 sales by product, bottom 10 sales by customer, top 10 sales by customer, bottom 10 sales by supplier, top 10 sales by supplier, bottom 10 sales by customer country, top 10 sales by customer country, bottom 10 sales by supplier country, top 10 sales by supplier country, average amount by month with mean and ewm, average amount by every month, amount feature over June 1997, amount feature over 1998, and all amount feature. PROJECT 5: ZERO TO MASTERY: THE COMPLETE GUIDE TO LEARNING SQLITE AND PYTHON GUI In this project, we provide you with the SQLite version of The Oracle Database Sample Schemas that provides a common platform for examples in each release of the Oracle Database. The sample database is also a good database for practicing with SQL, especially SQLite. The detailed description of the database can be found on: http://luna-ext.di.fc.ul.pt/oracle11g/server.112/e10831/diagrams.htm#insertedID0. The four schemas are a set of interlinked schemas. This set of schemas provides a layered approach to complexity: A simple schema Human Resources (HR) is useful for introducing basic topics. An extension to this schema supports Oracle Internet Directory demos; A second schema, Order Entry (OE), is useful for dealing with matters of intermediate complexity. Many data types are available in this schema, including non-scalar data types; The Online Catalog (OC) subschema is a collection of object-relational database objects built inside the OE schema; The Product Media (PM) schema is dedicated to multimedia data types; The Sales History (SH) schema is designed to allow for demos with large amounts of data. An extension to this schema provides support for advanced analytic processing. The HR schema consists of seven tables: regions, countries, locations, departments, employees, jobs, and job_histories. This book only implements HR schema, since the other schemas will be implemented in the next books.
Book 1: Practical Data Science Programming for Medical Datasets Analysis and Prediction with Python GUI In this book, you will implement two data science projects using Scikit-Learn, Scipy, and other libraries with Python GUI. In Project 1, you will learn how to use Scikit-Learn, NumPy, Pandas, Seaborn, and other libraries to perform how to predict early stage diabetes using Early Stage Diabetes Risk Prediction Dataset provided by Kaggle. This dataset contains the sign and symptpom data of newly diabetic or would be diabetic patient. This has been collected using direct questionnaires from the patients of Sylhet Diabetes Hospital in Sylhet, Bangladesh and approved by a doctor. You will develop a GUI using PyQt5 to plot distribution of features, feature importance, cross validation score, and prediced values versus true values. The machine learning models used in this project are Adaboost, Random Forest, Gradient Boosting, Logistic Regression, and Support Vector Machine. In Project 2, you will learn how to use Scikit-Learn, NumPy, Pandas, and other libraries to perform how to analyze and predict breast cancer using Breast Cancer Prediction Dataset provided by Kaggle. Worldwide, breast cancer is the most common type of cancer in women and the second highest in terms of mortality rates.Diagnosis of breast cancer is performed when an abnormal lump is found (from self-examination or x-ray) or a tiny speck of calcium is seen (on an x-ray). After a suspicious lump is found, the doctor will conduct a diagnosis to determine whether it is cancerous and, if so, whether it has spread to other parts of the body. This breast cancer dataset was obtained from the University of Wisconsin Hospitals, Madison from Dr. William H. Wolberg. You will develop a GUI using PyQt5 to plot distribution of features, pairwise relationship, test scores, prediced values versus true values, confusion matrix, and decision boundary. The machine learning models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, and Support Vector Machine. Book 2: Step by Step Tutorials For Data Science With Python GUI: Traffic And Heart Attack Analysis And Prediction In this book, you will implement two data science projects using Scikit-Learn, Scipy, and other libraries with Python GUI. In Chapter 1, you will learn how to use Scikit-Learn, Scipy, and other libraries to perform how to predict traffic (number of vehicles) in four different junctions using Traffic Prediction Dataset provided by Kaggle. This dataset contains 48.1k (48120) observations of the number of vehicles each hour in four different junctions: 1) DateTime; 2) Juction; 3) Vehicles; and 4) ID. In Chapter 2, you will learn how to use Scikit-Learn, NumPy, Pandas, and other libraries to perform how to analyze and predict heart attack using Heart Attack Analysis & Prediction Dataset provided by Kaggle. Book 3: BRAIN TUMOR: Analysis, Classification, and Detection Using Machine Learning and Deep Learning with Python GUI In this project, you will learn how to use Scikit-Learn, TensorFlow, Keras, NumPy, Pandas, Seaborn, and other libraries to implement brain tumor classification and detection with machine learning using Brain Tumor dataset provided by Kaggle. This dataset contains five first order features: Mean (the contribution of individual pixel intensity for the entire image), Variance (used to find how each pixel varies from the neighboring pixel 0, Standard Deviation (the deviation of measured Values or the data from its mean), Skewness (measures of symmetry), and Kurtosis (describes the peak of e.g. a frequency distribution). It also contains eight second order features: Contrast, Energy, ASM (Angular second moment), Entropy, Homogeneity, Dissimilarity, Correlation, and Coarseness. The machine learning models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, and Support Vector Machine. The deep learning models used in this project are MobileNet and ResNet50. In this project, you will develop a GUI using PyQt5 to plot boundary decision, ROC, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, training loss, and training accuracy.