Download Free Three Dimensional Manifolds Book in PDF and EPUB Free Download. You can read online Three Dimensional Manifolds and write the review.

From the reviews: "This is an excellent exposition about abelian Reidemeister torsions for three-manifolds." —Zentralblatt Math "This monograph contains a wealth of information many topologists will find very handy. ...Many of the new points of view pioneered by Turaev are gradually becoming mainstream and are spreading beyond the pure topology world. This monograph is a timely and very useful addition to the scientific literature." —Mathematical Reviews
This book grew out of a graduate course on 3-manifolds and is intended for a mathematically experienced audience that is new to low-dimensional topology. The exposition begins with the definition of a manifold, explores possible additional structures on manifolds, discusses the classification of surfaces, introduces key foundational results for 3-manifolds, and provides an overview of knot theory. It then continues with more specialized topics by briefly considering triangulations of 3-manifolds, normal surface theory, and Heegaard splittings. The book finishes with a discussion of topics relevant to viewing 3-manifolds via the curve complex. With about 250 figures and more than 200 exercises, this book can serve as an excellent overview and starting point for the study of 3-manifolds.
Over the past three decades there has been a total revolution in the classic branch of mathematics called 3-dimensional topology, namely the discovery that most solid 3-dimensional shapes are hyperbolic 3-manifolds. This book introduces and explains hyperbolic geometry and hyperbolic 3- and 2-dimensional manifolds in the first two chapters and then goes on to develop the subject. The author discusses the profound discoveries of the astonishing features of these 3-manifolds, helping the reader to understand them without going into long, detailed formal proofs. The book is heavily illustrated with pictures, mostly in color, that help explain the manifold properties described in the text. Each chapter ends with a set of exercises and explorations that both challenge the reader to prove assertions made in the text, and suggest further topics to explore that bring additional insight. There is an extensive index and bibliography.
William Thurston's work has had a profound influence on mathematics. He connected whole mathematical subjects in entirely new ways and changed the way mathematicians think about geometry, topology, foliations, group theory, dynamical systems, and the way these areas interact. His emphasis on understanding and imagination in mathematical learning and thinking are integral elements of his distinctive legacy. This four-part collection brings together in one place Thurston's major writings, many of which are appearing in publication for the first time. Volumes I–III contain commentaries by the Editors. Volume IV includes a preface by Steven P. Kerckhoff. Volume IV contains Thurston's highly influential, though previously unpublished, 1977–78 Princeton Course Notes on the Geometry and Topology of 3-manifolds. It is an indispensable part of the Thurston collection but can also be used on its own as a textbook or for self-study.
Every mathematician should be acquainted with the basic facts about the geometry of surfaces, of two-dimensional manifolds. The theory of three-dimensional manifolds is much more difficult and still only partly understood, although there is ample evidence that the theory of three-dimensional manifolds is one of the most beautiful in the whole of mathematics. This excellent introductory work makes this mathematical wonderland remained rather inaccessible to non-specialists. The author is both a leading researcher, with a formidable geometric intuition, and a gifted expositor. His vivid descriptions of what it might be like to live in this or that three-dimensional manifold bring the subject to life. Like Poincaré, he appeals to intuition, but his enthusiasm is infectious and should make many converts for this kind of mathematics. There are good pictures, plenty of exercises and problems, and the reader will find a selection of topics which are not found in the standard repertoire. This book contains a great deal of interesting mathematics.
This collection of papers constitutes a wide-ranging survey of recent developments in differential geometry and its interactions with other fields, especially partial differential equations and mathematical physics. This area of mathematics was the subject of a special program at the Institute for Advanced Study in Princeton during the academic year 1979-1980; the papers in this volume were contributed by the speakers in the sequence of seminars organized by Shing-Tung Yau for this program. Both survey articles and articles presenting new results are included. The articles on differential geometry and partial differential equations include a general survey article by the editor on the relationship of the two fields and more specialized articles on topics including harmonic mappings, isoperimetric and Poincaré inequalities, metrics with specified curvature properties, the Monge-Arnpere equation, L2 harmonic forms and cohomology, manifolds of positive curvature, isometric embedding, and Kraumlhler manifolds and metrics. The articles on differential geometry and mathematical physics cover such topics as renormalization, instantons, gauge fields and the Yang-Mills equation, nonlinear evolution equations, incompleteness of space-times, black holes, and quantum gravity. A feature of special interest is the inclusion of a list of more than one hundred unsolved research problems compiled by the editor with comments and bibliographical information.
One service mathematics has rendered the human race. It has put common sense back where it belongs. It has put common sense back where it belongs, on the topmost shelf next to the dusty canister labelled discarded nonsense. Eric TBell Every picture tells a story. Advenisement for for Sloan's backache and kidney oils, 1907 The book you have in your hands as you are reading this, is a text on3-dimensional topology. It can serve as a pretty comprehensive text book on the subject. On the other hand, it frequently gets to the frontiers of current research in the topic. If pressed, I would initially classify it as a monograph, but, thanks to the over three hundred illustrations of the geometrical ideas involved, as a rather accessible one, and hence suitable for advanced classes. The style is somewhat informal; more or less like orally presented lectures, and the illustrations more than make up for all the visual aids and handwaving one has at one's command during an actual presentation.
Here is a thorough review of topics in 3-dimensional topology, derived from a decade of courses taught by the author. The author keeps the exposition to an elementary level by presenting the material mainly from the point of view of special polyhedra and special spines of 3-manifolds. The book culminates with the recognition procedure for Haken manifolds, and includes up-to-date results in computer enumeration of 3-mainfolds. The second edition adds new results, new proofs, and commentaries. Algorithmic Topology and Classification of 3-Manifolds serves as a standard reference for algorithmic 3-dimensional topology for both graduate students and researchers.