Download Free Three Dimensional Hydrodynamic Hot Spot Model Hmx Nitroguanidine Interactions Of Shock Waves And Voids Book in PDF and EPUB Free Download. You can read online Three Dimensional Hydrodynamic Hot Spot Model Hmx Nitroguanidine Interactions Of Shock Waves And Voids and write the review.

The interaction of a shock wave with a single air hole and a matrix of air holes in PETN, HMX, and TATB has been numerically modeled. The hot-spot formation, interaction, and the resulting buildup toward detonation were computed using three-dimensional numerical Eulerian hydrodynamics with Arrhenius chemical reaction and accurate equations of state according to the hydrodynamic hot-spot model. The basic differences between shock sensitive explosives (PETN, HMX) and shock insensitive explosives (TATB, NQ) may be described using the hydrodynamic hot-spot model. The reactive hydrodynamics of desensitization of heterogeneous explosives by a weak preshock has been numerically modeled. The preshock desensitizes the heterogeneous explosive by closing the air holes and making it more homogeneous. A higher pressure second shock has a lower temperature in the multiple shocked explosive than in single shocked explosives. The multiple shock temperature may be low enough to cause a detonation wave to fail to propagate through the preshocked explosive. 10 refs., 12 figs.
The basic processes in the shock initiation of heterogeneous explosives have been investigated theoretically using a model of a cube of nitromethane containing 91 cubic air holes. The interaction of a shock wave with a single air hole and a matrix of air holes in PETN, HMX, and TATB has been numerically modeled. The interaction of a shock wave with the density discontinuities, the resulting hot-spot formation and interaction, and the buildup to propagating detonation were computed using three-dimensional numerical Eulerian hydrodynamics with Arrhenius chemical reaction and accurate equations of state according to the hydrodynamic hot-spot model. The basic processes in the desensitization of a heterogeneous explosive by preshocking with a shock pressure too low to cause propagating detonation was numerically modeled. The basic differences between shock sensitive explosives such as PETN or HMX and shock insensitive explosives such as TATB or NQ may be described using the hydrodynamic hot-spot model.
Charles Mader, a leading scientist who conducted theoretical research at Los Alamos National Laboratory for more than 30 years, sets a new standard with this reference on numerical modeling of explosives and propellants. This book updates and expands the information presented in the author's landmark work, Numerical Modeling of Detonations, published in 1979 and still in use today. Numerical Modeling of Explosives and Propellants incorporates the considerable changes the personal computer has brought to numerical modeling since the first book was published, and includes new three-dimensional modeling techniques and new information on propellant performance and vulnerability. Both an introduction to the physics and chemistry of explosives and propellants and a guide to numerical modeling of detonation and reactive fluid dynamics, Numerical Modeling of Explosives and Propellants offers scientists and engineers a complete picture of the current state of explosive and propellant technology and numerical modeling. The book is richly illustrated with figures that support the concepts, and filled with tables for quick access to precise data. The accompanying CD-ROM contains computer codes that are the national standard by which modeling is evaluated. Dynamic material properties data files and animation files are also included. There is no other book available today that offers this vital information.
Major advances, both in modeling methods and in the computing power required to make those methods viable, have led to major breakthroughs in our ability to model the performance and vulnerability of explosives and propellants. In addition, the development of proton radiography during the last decade has provided researchers with a major new experimental tool for studying explosive and shock wave physics. Problems that were once considered intractable – such as the generation of water cavities, jets, and stems by explosives and projectiles – have now been solved. Numerical Modeling of Explosives and Propellants, Third Edition provides a complete overview of this rapidly emerging field, covering basic reactive fluid dynamics as well as the latest and most complex methods and findings. It also describes and evaluates Russian contributions to the experimental explosive physics database, which only recently have become available. This book comes with downloadable resources that contain— · FORTRAN and executable computer codes that operate under Microsoft® Windows Vista operating system and the OS X operating system for Apple computers · Windows Vista and MAC compatible movies and PowerPoint presentations for each chapter · Explosive and shock wave databases generated at the Los Alamos National Laboratory and the Russian Federal Nuclear Centers Charles Mader’s three-pronged approach – through text, computer programs, and animations – imparts a thorough understanding of new computational methods and experimental measuring techniques, while also providing the tools to put these methods to effective use.
This volume collects the progress in the last decade or two in selected topics within the field of organic energetic compounds. New areas of energetic materials science have achieved prominence, such as molecular orbital calculations, toxicology, biodegradation, and counter-terrorism. The topics selected for discussion in this volume embody the more exciting work in the field which is taking place in laboratories around the world.
This is a broad-based text on the fundamentals of explosive behavior and the application of explosives in civil engineering, industrial processes, aerospace applications, and military uses.
While much is known about the effects of shock compression on monolithic materials, the unusual physical and chemical processes that take place when a porous medium is shocked have hardly been studied until now. Here, leading researchers in condensed matter physics, physical chemistry, metallurgy, mechanics, and materials science bridge this gap. The focus is on heterogeneous deformation mechanisms, nonequilibrium thermodynamics, and chemical processes, covering such topics as modelling the complex interplay of thermal, mechanical, and chemical processes; experimental data on pore collapse and their interpretation; and synthesis of new materials through shock-induced chemical reactions. By presenting not only the most recent results, but also the open questions that remain, these essays convey the excitement of developing a scientific basis for understanding shock compression.