Download Free Thinking Practices In Mathematics And Science Learning Book in PDF and EPUB Free Download. You can read online Thinking Practices In Mathematics And Science Learning and write the review.

The term used in the title of this volume--thinking practices--evokes questions that the authors of the chapters within it begin to answer: What are thinking practices? What would schools and other learning settings look like if they were organized for the learning of thinking practices? Are thinking practices general, or do they differ by disciplines? If there are differences, what implications do those differences have for how we organize teaching and learning? How do perspectives on learning, cognition, and culture affect the kinds of learning experiences children and adults have? This volume describes advances that have been made toward answering these questions. These advances involve several agendas, including increasing interdisciplinary communication and collaboration; reconciling research on cognition with research on teaching, learning, and school culture; and strengthening the connections between research and school practice. The term thinking practices is symbolic of a combination of theoretical perspectives that have contributed to the volume editors' understanding of how people learn, how they organize their thinking inside and across disciplines, and how school learning might be better organized. By touring through some of the perspectives on thinking and learning that have evolved into school learning designs, Greeno and Goldman begin to establish a frame for what they are calling thinking practices. This volume is a significant contribution to a topic that they believe will continue to emerge as a coherent body of scientific and educational research and practice.
A thinking student is an engaged student Teachers often find it difficult to implement lessons that help students go beyond rote memorization and repetitive calculations. In fact, institutional norms and habits that permeate all classrooms can actually be enabling "non-thinking" student behavior. Sparked by observing teachers struggle to implement rich mathematics tasks to engage students in deep thinking, Peter Liljedahl has translated his 15 years of research into this practical guide on how to move toward a thinking classroom. Building Thinking Classrooms in Mathematics, Grades K–12 helps teachers implement 14 optimal practices for thinking that create an ideal setting for deep mathematics learning to occur. This guide Provides the what, why, and how of each practice and answers teachers’ most frequently asked questions Includes firsthand accounts of how these practices foster thinking through teacher and student interviews and student work samples Offers a plethora of macro moves, micro moves, and rich tasks to get started Organizes the 14 practices into four toolkits that can be implemented in order and built on throughout the year When combined, these unique research-based practices create the optimal conditions for learner-centered, student-owned deep mathematical thinking and learning, and have the power to transform mathematics classrooms like never before.
In this second volume of It’s All About Thinking, the authors focus their expertise on the disciplines of mathematics and science, translating principles into practices that help other educators with their students. How can we help students develop the thinking skills they need to become successful learners? How does this relate to deep learning of important concepts in mathematics and science? How can we engage and support diverse learners in inclusive classrooms where they develop understanding and thinking skills? In this book, Faye, Leyton and Carole explore these questions and offer classroom examples to help busy teachers develop communities where all students learn. This book is written by three experienced educators who offer a welcoming and “can-do” approach to the big ideas in math and science education today. In this book you will find: insightful ways to teach diverse learners (Information circles, open-ended strategies, inquiry, manipulatives and models) lessons crafted using curriculum design frameworks (udl and backwards design) assessment for, as, and of learning fully fleshed-out lessons and lesson sequences inductive teaching to help students develop deep learning and thinking skills in Math and Science assessment tools (and student samples) for concepts drawn from learning outcomes in Math and Science curricula excellent examples of theory and practice made accessible real school examples of collaboration — teachers working together to create better learning opportunities for their students.
Selected as the Michigan Council of Teachers of Mathematics winter book club book! Rich tasks, collaborative work, number talks, problem-based learning, direct instruction...with so many possible approaches, how do we know which ones work the best? In Visible Learning for Mathematics, six acclaimed educators assert it’s not about which one—it’s about when—and show you how to design high-impact instruction so all students demonstrate more than a year’s worth of mathematics learning for a year spent in school. That’s a high bar, but with the amazing K-12 framework here, you choose the right approach at the right time, depending upon where learners are within three phases of learning: surface, deep, and transfer. This results in "visible" learning because the effect is tangible. The framework is forged out of current research in mathematics combined with John Hattie’s synthesis of more than 15 years of education research involving 300 million students. Chapter by chapter, and equipped with video clips, planning tools, rubrics, and templates, you get the inside track on which instructional strategies to use at each phase of the learning cycle: Surface learning phase: When—through carefully constructed experiences—students explore new concepts and make connections to procedural skills and vocabulary that give shape to developing conceptual understandings. Deep learning phase: When—through the solving of rich high-cognitive tasks and rigorous discussion—students make connections among conceptual ideas, form mathematical generalizations, and apply and practice procedural skills with fluency. Transfer phase: When students can independently think through more complex mathematics, and can plan, investigate, and elaborate as they apply what they know to new mathematical situations. To equip students for higher-level mathematics learning, we have to be clear about where students are, where they need to go, and what it looks like when they get there. Visible Learning for Math brings about powerful, precision teaching for K-12 through intentionally designed guided, collaborative, and independent learning.
A thinking student is an engaged student Teachers often find it difficult to implement lessons that help students go beyond rote memorization and repetitive calculations. In fact, institutional norms and habits that permeate all classrooms can actually be enabling "non-thinking" student behavior. Sparked by observing teachers struggle to implement rich mathematics tasks to engage students in deep thinking, Peter Liljedahl has translated his 15 years of research into this practical guide on how to move toward a thinking classroom. Building Thinking Classrooms in Mathematics, Grades K–12 helps teachers implement 14 optimal practices for thinking that create an ideal setting for deep mathematics learning to occur. This guide Provides the what, why, and how of each practice and answers teachers’ most frequently asked questions Includes firsthand accounts of how these practices foster thinking through teacher and student interviews and student work samples Offers a plethora of macro moves, micro moves, and rich tasks to get started Organizes the 14 practices into four toolkits that can be implemented in order and built on throughout the year When combined, these unique research-based practices create the optimal conditions for learner-centered, student-owned deep mathematical thinking and learning, and have the power to transform mathematics classrooms like never before.
This supplement explains how the practices outlined in the book "Building Thinking Classrooms in Mathematics" work in a classroom with social distancing or in settings that are not always face-to-face. It walks teachers through how to adapt the 14 practices for 12 distinct settings, some of which came about as a result of the COVID-19 pandemic. Includes updated toolkits and a recommended order for the implementation of the practices for each of the settings.
Globally, mathematics and science education faces three crucial challenges: an increasing need for mathematics and science graduates; a declining enrolment of school graduates into university studies in these disciplines; and the varying quality of school teaching in these areas. Alongside these challenges, internationally more and more non-specialists are teaching mathematics and science at both primary and secondary levels, and research evidence has revealed how gaps and limitations in teachers’ content understandings can lead to classroom practices that present barriers to students’ learning. This book addresses these issues by investigating how teachers’ content knowledge interacts with their pedagogies across diverse contexts and perspectives. This knowledge-practice nexus is examined across mathematics and science teaching, traversing schooling phases and countries, with an emphasis on contexts of disadvantage. These features push the boundaries of research into teachers’ content knowledge. The book’s combination of mathematics and science enriches each discipline for the reader, and contributes to our understandings of student attainment by examining the nature of specialised content knowledge needed for competent teaching within and across the two domains. Exploring Mathematics and Science Teachers’ Knowledge will be key reading for researchers, doctoral students and postgraduates with a focus on Mathematics, Science and teacher knowledge research.
The research reported in this book provides reliable evidence on and knowledge about mathematics and science instruction that emphasizes student understanding--instruction consistent with the needs of students who will be citizens in an increasingly demanding technological world. The National Center for Improving Student Learning in Mathematics and Science--established in 1996 as a research center and funded by the U.S. Department of Education--was instrumental in developing instructional practices supportive of high student achievement in and understanding of mathematics and science concepts. NCISLA researchers worked with teachers, students, and administrators to construct learning environments that exemplify current research and theory about effective learning of mathematics and science. The careful programs of research conducted examined how instructional content and design, assessment, professional development, and organizational support can be designed, implemented, and orchestrated to support the learning of all students. This book presents a summary of the concepts, findings, and conclusions of the Center's research from 1996-2001. In the Introduction, the chapters in Understanding Mathematics and Science Matters are situated in terms of the reform movement in school mathematics and school science. Three thematically structured sections focus on, respectively, research directed toward what is involved when students learn mathematics and science with understanding; research on the role of teachers and the problems they face when attempting to teach their students mathematics and science with understanding; and a collaboration among some of the contributors to this volume to gather information about classroom assessment practices and organizational support for reform. The goal of this book is to help educational practitioners, policymakers, and the general public to see the validity of the reform recommendations, understand the recommended guidelines, and to use these to transform teaching and learning of mathematics and science in U.S. classrooms.
Teaching Math, Science, and Technology in Schools Today: Guidelines for Engaging Both Eager and Reluctant Learners offers unique, engaging, and thought-provoking ideas. The activities open imaginative doors to learning and provide opportunities for all learners. It surveys today’s most important trends and dilemmas while explaining how collaboration and critical thinking can be translated into fresh classroom practices. Questions, engagement, and curiosity are viewed as natural partners for mathematical problem solving, scientific inquiry, and learning about technology. Like the Common Core State Standards, the book builds on the social nature of learning to provide suggestions for both eager and reluctant learners. The overall goal of the book is to deepen the collective conversation, challenge thinking, and provide some up-to-date tools for teachers so they can help reverse the steady erosion of math, science, and technology understanding in the general population.
Use the powerful strategies of play and storytelling to help young children develop their "math brains." This easy-to-use resource includes fun activities, routines, and games inspired by children's books that challenge children to recognize and think more logically about the math all around them.