Download Free Thinking Geometrically Book in PDF and EPUB Free Download. You can read online Thinking Geometrically and write the review.

Thinking Geometrically: A Survey of Geometries is a well written and comprehensive survey of college geometry that would serve a wide variety of courses for both mathematics majors and mathematics education majors. Great care and attention is spent on developing visual insights and geometric intuition while stressing the logical structure, historical development, and deep interconnectedness of the ideas. Students with less mathematical preparation than upper-division mathematics majors can successfully study the topics needed for the preparation of high school teachers. There is a multitude of exercises and projects in those chapters developing all aspects of geometric thinking for these students as well as for more advanced students. These chapters include Euclidean Geometry, Axiomatic Systems and Models, Analytic Geometry, Transformational Geometry, and Symmetry. Topics in the other chapters, including Non-Euclidean Geometry, Projective Geometry, Finite Geometry, Differential Geometry, and Discrete Geometry, provide a broader view of geometry. The different chapters are as independent as possible, while the text still manages to highlight the many connections between topics. The text is self-contained, including appendices with the material in Euclid’s first book and a high school axiomatic system as well as Hilbert’s axioms. Appendices give brief summaries of the parts of linear algebra and multivariable calculus needed for certain chapters. While some chapters use the language of groups, no prior experience with abstract algebra is presumed. The text will support an approach emphasizing dynamical geometry software without being tied to any particular software.
"All readers can use this book to reignite their fascination with mathematics. Fosters not only a curiosity about geometry itself but crucially focuses on how learners can actively engage in thinking about geometry and its central key ideas."-Sylvia Johnson, Professor, Sheffield Hallam University"Exudes activity and interactivity. A book for learning geometry, learning to think more deeply about geometry, and also about its teaching and learning."-David Pimm, Professor, University of AlbertaDeveloping Thinking in Geometry enables teachers and their support staff to experience and teach geometric thinking. Discussing key teaching principles, the book and its accompanying interactive CD-ROM include many activities encouraging readers to extend their own learning, and teaching practices.Drawing on innovative approaches for teaching and learning geometry developed by the Open University's Centre for Mathematics Education, this resource is constructed around the following key themes:InvarianceLanguage and points of viewReasoning using invarianceVisualizing and representing
'Mason, Graham, and Johnston-Wilder have admirably succeeded in casting most of school algebra in terms of generalisation activity? not just the typical numerical and geometric pattern-based work, but also solving quadratics and simultaneous equations, graphing equations, and factoring. The authors raise our awareness of the scope of generalization and of the power of using this as a lens not just for algebra but for all of mathematics!' - Professor Carolyn Kieran, Departement de Mathematiques, Universite du Quebec a Montreal Algebra has always been a watershed for pupils learning mathematics. This book will enable you to think about yourself as a learner of algebra in a new way, and thus to teach algebra more successfully, overcoming difficulties and building upon skills that all learners have. This book is based on teaching principles developed by the team at The Open University's Centre for Mathematics Education which has a 20-year track record of innovative approaches to teaching and learning algebra. Written for teachers working with pupils aged 7-16, it includes numerous tasks ready for adaption for your teaching and discusses principles that teachers have found useful in preparing and conducting lessons. This is a 'must have' resource for all teachers of mathematics, primary or secondary, and their support staff. Anyone who wishes to create an understanding and enthusiasm for algebra, based upon firm research and effective practice, will enjoy this book. This book is the course reader for The Open University Course ME625 Developing Algebraic Thinking
Sasha Wang revisits the van Hiele model of geometric thinking with Sfard’s discursive framework to investigate geometric thinking from a discourse perspective. The author focuses on describing and analyzing pre-service teachers’ geometric discourse across different van Hiele levels. The explanatory power of Sfard’s framework provides a rich description of how pre-service teachers think in the context of quadrilaterals. It also contributes to our understanding of human thinking that is illustrated through the analysis of geometric discourse accompanied by vignettes.
What skills do we need to negotiate the changing technological circumstances of our lives? How should we respond to the changing space of the visual, the technological? We are bombarded with answers to these questions: by media, by government, and by education. For the most part we are told that what we need to do is utilize the latest technologies and develop the newest skills (computer literacy prominent among them). Here, with keen interdisciplinary insight, historical sensitivity, and corporate design experience, John T. Waisanen offers a different kind of argument. He looks to particular skills we might be losing (and might have for some time been losing): drawing in particular; and to the «art» of integrating complex vision, thought and practice, what he calls design - or geometrical thinking. This points to the importance of the arts as a physical practice and to the cultivation of complex vision and thought gained in and through an education where geometry and literature are equally important, where physical intelligence (not just dexterity) and philosophical intelligence are equally important.
Within cognitive science, two approaches currently dominate the problem of modeling representations. The symbolic approach views cognition as computation involving symbolic manipulation. Connectionism, a special case of associationism, models associations using artificial neuron networks. Peter Gärdenfors offers his theory of conceptual representations as a bridge between the symbolic and connectionist approaches. Symbolic representation is particularly weak at modeling concept learning, which is paramount for understanding many cognitive phenomena. Concept learning is closely tied to the notion of similarity, which is also poorly served by the symbolic approach. Gärdenfors's theory of conceptual spaces presents a framework for representing information on the conceptual level. A conceptual space is built up from geometrical structures based on a number of quality dimensions. The main applications of the theory are on the constructive side of cognitive science: as a constructive model the theory can be applied to the development of artificial systems capable of solving cognitive tasks. Gärdenfors also shows how conceptual spaces can serve as an explanatory framework for a number of empirical theories, in particular those concerning concept formation, induction, and semantics. His aim is to present a coherent research program that can be used as a basis for more detailed investigations.
This volume contains papers from the Second International Curriculum Conference sponsored by the Center for the Study of Mathematics Curriculum (CSMC). The intended audience includes policy makers, curriculum developers, researchers, teachers, teacher trainers, and anyone else interested in school mathematics curricula.
This book is a philosophical study of mathematics, pursued by considering and relating two aspects of mathematical thinking and practice, especially in modern mathematics, which, having emerged around 1800, consolidated around 1900 and extends to our own time, while also tracing both aspects to earlier periods, beginning with the ancient Greek mathematics. The first aspect is conceptual, which characterizes mathematics as the invention of and working with concepts, rather than only by its logical nature. The second, Pythagorean, aspect is grounded, first, in the interplay of geometry and algebra in modern mathematics, and secondly, in the epistemologically most radical form of modern mathematics, designated in this study as radical Pythagorean mathematics. This form of mathematics is defined by the role of that which beyond the limits of thought in mathematical thinking, or in ancient Greek terms, used in the book’s title, an alogon in the logos of mathematics. The outcome of this investigation is a new philosophical and historical understanding of the nature of modern mathematics and mathematics in general. The book is addressed to mathematicians, mathematical physicists, and philosophers and historians of mathematics, and graduate students in these fields.
The cognitive foundations of geometry have puzzled academics for a long time, and even today are mostly unknown to many scholars, including mathematical cognition researchers. Foundations of Geometric Cognition shows that basic geometric skills are deeply hardwired in the visuospatial cognitive capacities of our brains, namely spatial navigation and object recognition. These capacities, shared with non-human animals and appearing in early stages of the human ontogeny, cannot, however, fully explain a uniquely human form of geometric cognition. In the book, Hohol argues that Euclidean geometry would not be possible without the human capacity to create and use abstract concepts, demonstrating how language and diagrams provide cognitive scaffolding for abstract geometric thinking, within a context of a Euclidean system of thought. Taking an interdisciplinary approach and drawing on research from diverse fields including psychology, cognitive science, and mathematics, this book is a must-read for cognitive psychologists and cognitive scientists of mathematics, alongside anyone interested in mathematical education or the philosophical and historical aspects of geometry.
Tim Maudlin sets out a completely new method for describing the geometrical structure of spaces, and thus a better mathematical tool for describing and understanding space-time. He presents a historical review of the development of geometry and topology, and then his original Theory of Linear Structures.