Download Free Thinking About Godel And Turing Book in PDF and EPUB Free Download. You can read online Thinking About Godel And Turing and write the review.

Dr Gregory Chaitin, one of the world's leading mathematicians, is best known for his discovery of the remarkable ê number, a concrete example of irreducible complexity in pure mathematics which shows that mathematics is infinitely complex. In this volume, Chaitin discusses the evolution of these ideas, tracing them back to Leibniz and Borel as well as G”del and Turing.This book contains 23 non-technical papers by Chaitin, his favorite tutorial and survey papers, including Chaitin's three Scientific American articles. These essays summarize a lifetime effort to use the notion of program-size complexity or algorithmic information content in order to shed further light on the fundamental work of G”del and Turing on the limits of mathematical methods, both in logic and in computation. Chaitin argues here that his information-theoretic approach to metamathematics suggests a quasi-empirical view of mathematics that emphasizes the similarities rather than the differences between mathematics and physics. He also develops his own brand of digital philosophy, which views the entire universe as a giant computation, and speculates that perhaps everything is discrete software, everything is 0's and 1's.Chaitin's fundamental mathematical work will be of interest to philosophers concerned with the limits of knowledge and to physicists interested in the nature of complexity.
Dr Gregory Chaitin, one of the world's leading mathematicians, is best known for his discovery of the remarkable O number, a concrete example of irreducible complexity in pure mathematics which shows that mathematics is infinitely complex. In this volume, Chaitin discusses the evolution of these ideas, tracing them back to Leibniz and Borel as well as GAdel and Turing.This book contains 23 non-technical papers by Chaitin, his favorite tutorial and survey papers, including Chaitin's three Scientific American articles. These essays summarize a lifetime effort to use the notion of program-size complexity or algorithmic information content in order to shed further light on the fundamental work of GAdel and Turing on the limits of mathematical methods, both in logic and in computation. Chaitin argues here that his information-theoretic approach to metamathematics suggests a quasi-empirical view of mathematics that emphasizes the similarities rather than the differences between mathematics and physics. He also develops his own brand of digital philosophy, which views the entire universe as a giant computation, and speculates that perhaps everything is discrete software, everything is 0's and 1's.Chaitin's fundamental mathematical work will be of interest to philosophers concerned with the limits of knowledge and to physicists interested in the nature of complexity."
Dr Gregory Chaitin, one of the world's leading mathematicians, is best known for his discovery of the remarkable Ω number, a concrete example of irreducible complexity in pure mathematics which shows that mathematics is infinitely complex. In this volume, Chaitin discusses the evolution of these ideas, tracing them back to Leibniz and Borel as well as Gödel and Turing.This book contains 23 non-technical papers by Chaitin, his favorite tutorial and survey papers, including Chaitin's three Scientific American articles. These essays summarize a lifetime effort to use the notion of program-size complexity or algorithmic information content in order to shed further light on the fundamental work of Gödel and Turing on the limits of mathematical methods, both in logic and in computation. Chaitin argues here that his information-theoretic approach to metamathematics suggests a quasi-empirical view of mathematics that emphasizes the similarities rather than the differences between mathematics and physics. He also develops his own brand of digital philosophy, which views the entire universe as a giant computation, and speculates that perhaps everything is discrete software, everything is 0's and 1's.Chaitin's fundamental mathematical work will be of interest to philosophers concerned with the limits of knowledge and to physicists interested in the nature of complexity.
Computer scientists, mathematicians, and philosophers discuss the conceptual foundations of the notion of computability as well as recent theoretical developments. In the 1930s a series of seminal works published by Alan Turing, Kurt Gödel, Alonzo Church, and others established the theoretical basis for computability. This work, advancing precise characterizations of effective, algorithmic computability, was the culmination of intensive investigations into the foundations of mathematics. In the decades since, the theory of computability has moved to the center of discussions in philosophy, computer science, and cognitive science. In this volume, distinguished computer scientists, mathematicians, logicians, and philosophers consider the conceptual foundations of computability in light of our modern understanding.Some chapters focus on the pioneering work by Turing, Gödel, and Church, including the Church-Turing thesis and Gödel's response to Church's and Turing's proposals. Other chapters cover more recent technical developments, including computability over the reals, Gödel's influence on mathematical logic and on recursion theory and the impact of work by Turing and Emil Post on our theoretical understanding of online and interactive computing; and others relate computability and complexity to issues in the philosophy of mind, the philosophy of science, and the philosophy of mathematics.ContributorsScott Aaronson, Dorit Aharonov, B. Jack Copeland, Martin Davis, Solomon Feferman, Saul Kripke, Carl J. Posy, Hilary Putnam, Oron Shagrir, Stewart Shapiro, Wilfried Sieg, Robert I. Soare, Umesh V. Vazirani
What Is Thinking? What is Turing's Test? What is Gödel's Undecidability Theorem? How is Berners-Lee's Semantic Web logic going to overcome paradoxes and complexity to produce machine processing on the Web? Thinking on the Web draws from the contributions of Tim Berners-Lee (What is solvable on the Web?), Kurt Gödel (What is decidable?), and Alan Turing (What is machine intelligence?) to evaluate how much "intelligence" can be projected onto the Web. The authors offer both abstract and practical perspectives to delineate the opportunities and challenges of a "smarter" Web through a threaded series of vignettes and a thorough review of Semantic Web development.
From Jim Holt, the New York Times bestselling author of Why Does the World Exist?, comes an entertaining and accessible guide to the most profound scientific and mathematical ideas of recent centuries in When Einstein Walked with Gödel: Excursions to the Edge of Thought. Does time exist? What is infinity? Why do mirrors reverse left and right but not up and down? In this scintillating collection, Holt explores the human mind, the cosmos, and the thinkers who’ve tried to encompass the latter with the former. With his trademark clarity and humor, Holt probes the mysteries of quantum mechanics, the quest for the foundations of mathematics, and the nature of logic and truth. Along the way, he offers intimate biographical sketches of celebrated and neglected thinkers, from the physicist Emmy Noether to the computing pioneer Alan Turing and the discoverer of fractals, Benoit Mandelbrot. Holt offers a painless and playful introduction to many of our most beautiful but least understood ideas, from Einsteinian relativity to string theory, and also invites us to consider why the greatest logician of the twentieth century believed the U.S. Constitution contained a terrible contradiction—and whether the universe truly has a future.
Kurt Gödel’s Incompleteness Theorems sent shivers through Vienna’s intellectual circles and directly challenged Ludwig Wittgenstein’s dominant philosophy. Alan Turing’s mathematical genius helped him break the Nazi Enigma Code during WWII. Though they never met, their lives strangely mirrored one another—both were brilliant, and both met with tragic ends. Here, a mysterious narrator intertwines these parallel lives into a double helix of genius and anguish, wonderfully capturing not only two radiant, fragile minds but also the zeitgeist of the era.
"An introduction to the life and thought of Kurt Gödel, who transformed our conception of math forever"--Provided by publisher.
This essential companion to Chaitins highly successful The Limits of Mathematics, gives a brilliant historical survey of important work on the foundations of mathematics. The Unknowable is a very readable introduction to Chaitins ideas, and includes software (on the authors website) that will enable users to interact with the authors proofs. "Chaitins new book, The Unknowable, is a welcome addition to his oeuvre. In it he manages to bring his amazingly seminal insights to the attention of a much larger audience His work has deserved such treatment for a long time." JOHN ALLEN PAULOS, AUTHOR OF ONCE UPON A NUMBER
Programming Legend Charles Petzold unlocks the secrets of the extraordinary and prescient 1936 paper by Alan M. Turing Mathematician Alan Turing invented an imaginary computer known as the Turing Machine; in an age before computers, he explored the concept of what it meant to be computable, creating the field of computability theory in the process, a foundation of present-day computer programming. The book expands Turing’s original 36-page paper with additional background chapters and extensive annotations; the author elaborates on and clarifies many of Turing’s statements, making the original difficult-to-read document accessible to present day programmers, computer science majors, math geeks, and others. Interwoven into the narrative are the highlights of Turing’s own life: his years at Cambridge and Princeton, his secret work in cryptanalysis during World War II, his involvement in seminal computer projects, his speculations about artificial intelligence, his arrest and prosecution for the crime of "gross indecency," and his early death by apparent suicide at the age of 41.