Download Free Thin Film Shape Memory Alloys Book in PDF and EPUB Free Download. You can read online Thin Film Shape Memory Alloys and write the review.

The first dedicated book describing the properties, preparation, characterization and device applications of TiNi-based shape memory alloys.
This book disseminates recent research, theories, and practices relevant to the areas of surface engineering and the processing of materials for functional applications in the aerospace, automobile, and biomedical industries. The book focuses on the hidden technologies and advanced manufacturing methods that may not be standardized by research institutions but are greatly beneficial to material and manufacturing industrial engineers in many ways. It details projects, research activities, and innovations in a global platform to strengthen the knowledge of the concerned community. The book covers surface engineering including coating, deposition, cladding, nanotechnology, surface finishing, precision machining, processing, and emerging advanced manufacturing technologies to enhance the performance of materials in terms of corrosion, wear, and fatigue. The book captures the emerging areas of materials science and advanced manufacturing engineering and presents recent trends in research for researchers, field engineers, and academic professionals.
The production of thin film TiPdNi shape memory alloys (SMA) using ion beam assisted deposition (IBAD) is being studied as a way to increase the actuation frequencies and transformation temperatures of thin film SMA for micro-actuator applications. The capability to transmit extremely high forces along with a large stroke, large strain memory, and high corrosion resistance makes shape memory alloys prime candidates for use in micro-actuator applications. However, low actuation frequency (~1Hz at macro-scale), and low transition temperature (below 100°C) makes commercially available NiTi incompatible with applications in extreme environments. The transformation temperature and actuation frequency of shape memory alloys can be improved through the production of thin film TiPdNi. Through the substitution of Pd for Ni in equiatomic NiTi, the transformation temperature can be varied from approximately room temperature to 527°C. The composition that has received the most attention is Ti50Pd30Ni20 because of its transformation temperature of over 200°C. However, the shape memory effect of Ti50Pd30Ni20 is adversely affected by the low critical stress needed for slip at high temperatures, which results in unrecoverable strain. Age hardening or thermo-mechanical treatments such as cold rolling have been found to improve the critical stress for slip in bulk form SMA due to an increased density of dislocations. Precipitation hardening, as well as, ion bombardment, is expected to increase the high temperature properties in IBAD deposited Ti50Pd30Ni20 film SMA. Additionally, ion bombardment during deposition can be used to improve film properties such as morphology, density, stress level, crystallinity, as well as, limit defects. Due to the refined grain size, increased density, and reduced defects, IBAD is able to produce films of 1 micron or less, which will greatly reduces the SMA actuation time due to the increased surface area --to -- volume ratio. In t.
Keywords: SMA, shape memory alloys, TiPdNi, ion beam assisted deposition, IBAD.
This book provides a working knowledge of the modeling and engineering applications of shape memory alloys (SMAs), beginning with a rigorous introduction to continuum mechanics and continuum thermodynamics as they relate to the development of SMA modeling.Modern SMAs can recover from large amounts of bending and deformation, and millions of repetitions within recoverable ranges. SMAs are used in the medical industry to create stents, in the dental industry to create dental and orthodontic archwires, and in the aerospace industry to create fluid fittings. The text presents a unified approach to the constitutive modeling of SMAs, including modeling of magnetic and high temperature SMAs.
This book focuses on smart materials and structures, which are also referred to as intelligent, adaptive, active, sensory, and metamorphic. The ultimate goal is to develop biologically inspired multifunctional materials with the capability to adapt their structural characteristics, monitor their health condition, perform self-diagnosis and self-repair, morph their shape, and undergo significant controlled motion.
Ni-free Ti-based Shape Memory Alloys reviews the fundamental issues of biomedical beta-type Ti base shape memory and superelastic alloys, including martensitic transformation, shape memory and superelastic properties, alloy development, thermomechanical treatment and microstructure control, and biocompatibility. Some unique properties, such as large nonlinear elastic behavior and low Young’s modulus, observed in metastable Ti alloys are discussed on the basis of phase stability. As it is expected that superelastic Ti alloys will further expand the applications of shape memory alloys within the biomedical field, this book provides a comprehensive review of these new findings in Ti-base shape memory and superelastic alloys. Includes coverage of phase transformations in titanium alloys Discusses mechanical properties and alloy development Presents a review of Ti-based shape alloys and their applications