Download Free Theta Constants Riemann Surfaces And The Modular Group Book in PDF and EPUB Free Download. You can read online Theta Constants Riemann Surfaces And The Modular Group and write the review.

There are incredibly rich connections between classical analysis and number theory. For instance, analytic number theory contains many examples of asymptotic expressions derived from estimates for analytic functions, such as in the proof of the Prime Number Theorem. In combinatorial number theory, exact formulas for number-theoretic quantities are derived from relations between analytic functions. Elliptic functions, especially theta functions, are an important class of such functions in this context, which had been made clear already in Jacobi's Fundamenta nova. Theta functions are also classically connected with Riemann surfaces and with the modular group $\Gamma = \mathrm{PSL (2,\mathbb{Z )$, which provide another path for insights into number theory. Farkas and Kra, well-known masters of the theory of Riemann surfaces and the analysis of theta functions, uncover here interesting combinatorial identities by means of the function theory on Riemann surfaces related to the principal congruence subgroups $\Gamma(k)$. For instance, the authors use this approach to derive congruences discovered by Ramanujan for the partition function, with the main ingredient being the construction of the same function in more than one way. The authors also obtain a variant on Jacobi's famous result on the number of ways that an integer can be represented as a sum of four squares, replacing the squares by triangular numbers and, in the process, obtaining a cleaner result. The recent trend of applying the ideas and methods of algebraic geometry to the study of theta functions and number theory has resulted in great advances in the area. However, the authors choose to stay with the classical point of view. As a result, their statements and proofs are very concrete. In this book the mathematician familiar with the algebraic geometry approach to theta functions and number theory will find many interesting ideas as well as detailed explanations and derivations of new and old results. Highlights of the book include systematic studies of theta constant identities, uniformizations of surfaces represented by subgroups of the modular group, partition identities, and Fourier coefficients of automorphic functions. Prerequisites are a solid understanding of complex analysis, some familiarity with Riemann surfaces, Fuchsian groups, and elliptic functions, and an interest in number theory. The book contains summaries of some of the required material, particularly for theta functions and theta constants. Readers will find here a careful exposition of a classical point of view of analysis and number theory. Presented are numerous examples plus suggestions for research-level problems. The text is suitable for a graduate course or for independent reading.
This book presents the proceedings from the conference honoring the work of Leon Ehrenpreis. Professor Ehrenpreis worked in many different areas of mathematics and found connections among all of them. For example, one can find his analytic ideas in the context of number theory, geometric thinking within analysis, transcendental number theory applied to partial differential equations, and more. The conference brought together the communities of mathematicians working in the areas of interest to Professor Ehrenpreis and allowed them to share the research inspired by his work. The collection of articles here presents current research on PDEs, several complex variables, analytic number theory, integral geometry, and tomography. The work of Professor Ehrenpreis has contributed to basic definitions in these areas and has motivated a wealth of research results. This volume offers a survey of the fundamental principles that unified the conference and influenced the mathematics of Leon Ehrenpreis.
This volume presents the proceedings of the I Iberoamerican Congress on Geometry: Cruz del Sur held in Olmué, Chile. The main topic was "The Geometry of Groups: Curves, Abelian Varieties, Theoretical and Computational Aspects". Participants came from all over the world. The volume gathers the expanded contributions from most of the participants in the Congress. Articles reflect the topic in its diversity and unity, and in particular, the work done on the subject by Iberoamerican mathematicians. Original results and surveys are included on the following areas: curves and Riemann surfaces, abelian varieties, and complex dynamics. The approaches are varied, including Kleinian groups, quasiconformal mappings and Teichmüller spaces, function theory, moduli spaces, automorphism groups,merican algebraic geometry, and more.
The arithmetic and geometry of moduli spaces and their fundamental groups are a very active research area. This book offers a complete overview of developments made over the last decade. The papers in this volume examine the geometry of moduli spaces of curves with a function on them. The main players in Part 1 are the absolute Galois group $G {\mathbb Q $ of the algebraic numbers and its close relatives. By analyzing how $G {\mathbb Q $ acts on fundamental groups defined by Hurwitz moduli problems, the authors achieve a grand generalization of Serre's program from the 1960s. Papers in Part 2 apply $\theta$-functions and configuration spaces to the study of fundamental groups over positive characteristic fields. In this section, several authors use Grothendieck's famous lifting results to give extensions to wildly ramified covers. Properties of the fundamental groups have brought collaborations between geometers and group theorists. Several Part 3 papers investigate new versions of the genus 0 problem. In particular, this includes results severely limiting possible monodromy groups of sphere covers. Finally, Part 4 papers treat Deligne's theory of Tannakian categories and arithmetic versions of the Kodaira-Spencer map. This volume is geared toward graduate students and research mathematicians interested in arithmetic algebraic geometry.
This marvellous and highly original book fills a significant gap in the extensive literature on classical modular forms. This is not just yet another introductory text to this theory, though it could certainly be used as such in conjunction with more traditional treatments. Its novelty lies in its computational emphasis throughout: Stein not only defines what modular forms are, but shows in illuminating detail how one can compute everything about them in practice. This is illustrated throughout the book with examples from his own (entirely free) software package SAGE, which really bring the subject to life while not detracting in any way from its theoretical beauty. The author is the leading expert in computations with modular forms, and what he says on this subject is all tried and tested and based on his extensive experience. As well as being an invaluable companion to those learning the theory in a more traditional way, this book will be a great help to those who wish to use modular forms in applications, such as in the explicit solution of Diophantine equations. There is also a useful Appendix by Gunnells on extensions to more general modular forms, which has enough in it to inspire many PhD theses for years to come. While the book's main readership will be graduate students in number theory, it will also be accessible to advanced undergraduates and useful to both specialists and non-specialists in number theory. --John E. Cremona, University of Nottingham William Stein is an associate professor of mathematics at the University of Washington at Seattle. He earned a PhD in mathematics from UC Berkeley and has held positions at Harvard University and UC San Diego. His current research interests lie in modular forms, elliptic curves, and computational mathematics.
Number theory has a wealth of long-standing problems, the study of which over the years has led to major developments in many areas of mathematics. This volume consists of seven significant chapters on number theory and related topics. Written by distinguished mathematicians, key topics focus on multipartitions, congruences and identities (G. Andrews), the formulas of Koshliakov and Guinand in Ramanujan's Lost Notebook (B. C. Berndt, Y. Lee, and J. Sohn), alternating sign matrices and the Weyl character formulas (D. M. Bressoud), theta functions in complex analysis (H. M. Farkas), representation functions in additive number theory (M. B. Nathanson), and mock theta functions, ranks, and Maass forms (K. Ono), and elliptic functions (M. Waldschmidt).
In this third volume of his modern introduction to quantum field theory, Eberhard Zeidler examines the mathematical and physical aspects of gauge theory as a principle tool for describing the four fundamental forces which act in the universe: gravitative, electromagnetic, weak interaction and strong interaction. Volume III concentrates on the classical aspects of gauge theory, describing the four fundamental forces by the curvature of appropriate fiber bundles. This must be supplemented by the crucial, but elusive quantization procedure. The book is arranged in four sections, devoted to realizing the universal principle force equals curvature: Part I: The Euclidean Manifold as a Paradigm Part II: Ariadne's Thread in Gauge Theory Part III: Einstein's Theory of Special Relativity Part IV: Ariadne's Thread in Cohomology For students of mathematics the book is designed to demonstrate that detailed knowledge of the physical background helps to reveal interesting interrelationships among diverse mathematical topics. Physics students will be exposed to a fairly advanced mathematics, beyond the level covered in the typical physics curriculum. Quantum Field Theory builds a bridge between mathematicians and physicists, based on challenging questions about the fundamental forces in the universe (macrocosmos), and in the world of elementary particles (microcosmos).
This is the first volume of a modern introduction to quantum field theory which addresses both mathematicians and physicists, at levels ranging from advanced undergraduate students to professional scientists. The book bridges the acknowledged gap between the different languages used by mathematicians and physicists. For students of mathematics the author shows that detailed knowledge of the physical background helps to motivate the mathematical subjects and to discover interesting interrelationships between quite different mathematical topics. For students of physics, fairly advanced mathematics is presented, which goes beyond the usual curriculum in physics.
More Explorations in Complex Functions is something of a sequel to GTM 287, Explorations in Complex Functions. Both texts introduce a variety of topics, from core material in the mainstream of complex analysis to tools that are widely used in other areas of mathematics and applications, but there is minimal overlap between the two books. The intended readership is the same, namely graduate students and researchers in complex analysis, independent readers, seminar attendees, or instructors for a second course in complex analysis. Instructors will appreciate the many options for constructing a second course that builds on a standard first course in complex analysis. Exercises complement the results throughout. There is more material in this present text than one could expect to cover in a year’s course in complex analysis. A mapping of dependence relations among chapters enables instructors and independent readers a choice of pathway to reading the text. Chapters 2, 4, 5, 7, and 8 contain the function theory background for some stochastic equations of current interest, such as SLE. The text begins with two introductory chapters to be used as a resource. Chapters 3 and 4 are stand-alone introductions to complex dynamics and to univalent function theory, including deBrange’s theorem, respectively. Chapters 5—7 may be treated as a unit that leads from harmonic functions to covering surfaces to the uniformization theorem and Fuchsian groups. Chapter 8 is a stand-alone treatment of quasiconformal mapping that paves the way for Chapter 9, an introduction to Teichmüller theory. The final chapters, 10–14, are largely stand-alone introductions to topics of both theoretical and applied interest: the Bergman kernel, theta functions and Jacobi inversion, Padé approximants and continued fractions, the Riemann—Hilbert problem and integral equations, and Darboux’s method for computing asymptotics.
This volume derives from the second Iberoamerican Congress on Geometry, held in 2001 in Mexico at the Centro de Investigacion en Matematicas A.C., an internationally recognized program of research in pure mathematics. The conference topics were chosen with an eye toward the presentation of new methods, recent results, and the creation of more interconnections between the different research groups working in complex manifolds and hyperbolic geometry. This volume reflects both the unity and the diversity of these subjects. Researchers around the globe have been working on problems concerning Riemann surfaces, as well as a wide scope of other issues: the theory of Teichmuller spaces, theta functions, algebraic geometry and classical function theory. Included here are discussions revolving around questions of geometry that are related in one way or another to functions of a complex variable. There are contributors on Riemann surfaces, hyperbolic geometry, Teichmuller spaces, and quasiconformal maps. Complex geometry has many applications--triangulations of surfaces, combinatorics, ordinary differential equations, complex dynamics, and the geometry of special curves and jacobians, among others. In this book, research mathematicians in complex geometry, hyperbolic geometry and Teichmuller spaces will find a selection of strong papers by international experts.