Download Free Thermophysical Properties Database Of Materials For Light Water Reactors And Heavy Water Reactors Book in PDF and EPUB Free Download. You can read online Thermophysical Properties Database Of Materials For Light Water Reactors And Heavy Water Reactors and write the review.

The thermophysical properties database for materials of light water reactors and heavy water reactors described in this technical document was established within the framework of an IAEA Coordinated Research Project. The database is intended to serve as a useful source of information on thermophysical properties data for water cooled reactor analyses. In particular, it aims at achieving improvements in safety and economics of future plants by helping to remove the need for large design margins to account for limitations of data and methods. The database has been developed into an internationally available Internet database (THERPRO) at Hanyang University (Republic of Korea), and now provides various materials properties data and an interactively accessible information resource and communications medium for researchers and engineers.--Publisher's description.
A resource for reactor physicists and engineers and students of nuclear power engineering, this publication provides a comprehensive summary of the thermophysical properties data needed in nuclear power engineering. It includes data for nuclear fuels (metallic and ceramic), coolants (gases, light water, heavy water and liquid metals), moderators, absorbers and structural materials. The correlations and equations provided allow for the estimation of all important thermodynamic and transport properties. The detailed material properties of both solid and liquid states are shown in tabular form. The data on thermophysical properties of saturated vapors of some metals are also given.--Publisher's description.
High temperature material property data for structural materials used in existing Light Water Reactors (LWRs) are limited. Often, extrapolated values recommended in the literature differ significantly. To reduce such uncertainties, new data for SA533 Grade B, Class 1 (SA533B1) low alloy steel, Stainless Steel 304 (SS304), and Inconel 600, found in Light Water Reactor (LWR) vessels and penetrations, were acquired and tested using material property systems available at the High Temperature Test Laboratory (HTTL) at the Idaho National Laboratory (INL). Properties measured include thermal expansion, specific heat capacity, and thermal diffusivity for temperatures up to 1200 oC. From these results, thermal conductivity and density were calculated. Results show that, in some cases, previously recommended values for these material differ significantly from measured values at high temperatures. This is especially true for SA533B1, as previous data do not account for the phase transformation of this material between 740 oC and 840 oC.
Handbook of Generation IV Nuclear Reactors, Second Edition is a fully revised and updated comprehensive resource on the latest research and advances in generation IV nuclear reactor concepts. Editor Igor Pioro and his team of expert contributors have updated every chapter to reflect advances in the field since the first edition published in 2016. The book teaches the reader about available technologies, future prospects and the feasibility of each concept presented, equipping them users with a strong skillset which they can apply to their own work and research. Provides a fully updated, revised and comprehensive handbook dedicated entirely to generation IV nuclear reactors Includes new trends and developments since the first publication, as well as brand new case studies and appendices Covers the latest research, developments and design information surrounding generation IV nuclear reactors
Materials in a nuclear environment are exposed to extreme conditions of radiation, temperature and/or corrosion, and in many cases the combination of these makes the material behavior very different from conventional materials. This is evident for the four major technological challenges the nuclear technology domain is facing currently: (i) long-term operation of existing Generation II nuclear power plants, (ii) the design of the next generation reactors (Generation IV), (iii) the construction of the ITER fusion reactor in Cadarache (France), (iv) and the intermediate and final disposal of nuclear waste. In order to address these challenges, engineers and designers need to know the properties of a wide variety of materials under these conditions and to understand the underlying processes affecting changes in their behavior, in order to assess their performance and to determine the limits of operation. Comprehensive Nuclear Materials, Second Edition, Seven Volume Set provides broad ranging, validated summaries of all the major topics in the field of nuclear material research for fission as well as fusion reactor systems. Attention is given to the fundamental scientific aspects of nuclear materials: fuel and structural materials for fission reactors, waste materials, and materials for fusion reactors. The articles are written at a level that allows undergraduate students to understand the material, while providing active researchers with a ready reference resource of information. Most of the chapters from the first Edition have been revised and updated and a significant number of new topics are covered in completely new material. During the ten years between the two editions, the challenge for applications of nuclear materials has been significantly impacted by world events, public awareness, and technological innovation. Materials play a key role as enablers of new technologies, and we trust that this new edition of Comprehensive Nuclear Materials has captured the key recent developments. Critically reviews the major classes and functions of materials, supporting the selection, assessment, validation and engineering of materials in extreme nuclear environments Comprehensive resource for up-to-date and authoritative information which is not always available elsewhere, even in journals Provides an in-depth treatment of materials modeling and simulation, with a specific focus on nuclear issues Serves as an excellent entry point for students and researchers new to the field
This book presents a comprehensive review of studies in nuclear reactors technology from authors across the globe. Topics discussed in this compilation include: thermal hydraulic investigation of TRIGA type research reactor, materials testing reactor and high temperature gas-cooled reactor; the use of radiogenic lead recovered from ores as a coolant for fast reactors; decay heat in reactors and spent-fuel pools; present status of two-phase flow studies in reactor components; thermal aspects of conventional and alternative fuels in supercritical water?cooled reactor; two-phase flow coolant behavior in boiling water reactors under earthquake condition; simulation of nuclear reactors core; fuel life control in light-water reactors; methods for monitoring and controlling power in nuclear reactors; structural materials modeling for the next generation of nuclear reactors; application of the results of finite group theory in reactor physics; and the usability of vermiculite as a shield for nuclear reactor.
This book examines nuclear materials through select chapters focusing on the impact of reactor technology, use of materials data in modeling applications, and reasoning in design choices. It provides an opportunity to explore contemporary and emerging frontiers. Chapters cover such topics as manufacturing approaches, forms, fundamental considerations, and applications as well as highlight contemporary pathways in nuclear material development.