Download Free Thermoelastic Fracture Mechanics Using Boundary Elements Book in PDF and EPUB Free Download. You can read online Thermoelastic Fracture Mechanics Using Boundary Elements and write the review.

A description of the formulation and implementation of the dual boundary element method (DBEM) as applied to 3-D fracture mechanics in thermoelasticity. J-integral implementation and crack growth simulation are included. The work achieves the mixed-mode SIF through a decomposition technique and features methods that allow easy 3-D crack growth simulation under thermomechanical loads. It is designed to be used by postgraduate students and researchers in academia and industry.
A novel computational procedure called the scaled boundary finite-element method is described which combines the advantages of the finite-element and boundary-element methods : Of the finite-element method that no fundamental solution is required and thus expanding the scope of application, for instance to anisotropic material without an increase in complexity and that singular integrals are avoided and that symmetry of the results is automatically satisfied. Of the boundary-element method that the spatial dimension is reduced by one as only the boundary is discretized with surface finite elements, reducing the data preparation and computational efforts, that the boundary conditions at infinity are satisfied exactly and that no approximation other than that of the surface finite elements on the boundary is introduced. In addition, the scaled boundary finite-element method presents appealing features of its own : an analytical solution inside the domain is achieved, permitting for instance accurate stress intensity factors to be determined directly and no spatial discretization of certain free and fixed boundaries and interfaces between different materials is required. In addition, the scaled boundary finite-element method combines the advantages of the analytical and numerical approaches. In the directions parallel to the boundary, where the behaviour is, in general, smooth, the weighted-residual approximation of finite elements applies, leading to convergence in the finite-element sense. In the third (radial) direction, the procedure is analytical, permitting e.g. stress-intensity factors to be determined directly based on their definition or the boundary conditions at infinity to be satisfied exactly. In a nutshell, the scaled boundary finite-element method is a semi-analytical fundamental-solution-less boundary-element method based on finite elements. The best of both worlds is achieved in two ways: with respect to the analytical and numerical methods and with respect to the finite-element and boundary-element methods within the numerical procedures. The book serves two goals: Part I is an elementary text, without any prerequisites, a primer, but which using a simple model problem still covers all aspects of the method and Part II presents a detailed derivation of the general case of statics, elastodynamics and diffusion.
Thermal and mechanical fatigue problems are encountered in many engineering components, such as pressure vessels, high temperature vessels, high temperature engines and interfaces in computer technology. This book describes the modelling of thermal fatigue using the Dual Boundary Element Method.
The boundary element method (BEM) is a modern numerical technique, which has enjoyed increasing popularity over the last two decades, and is now an established alternative to traditional computational methods of engineering analysis. The main advantage of the BEM is its unique ability to provide a complete solution in terms of boundary values only, with substantial savings in modelling effort. This two-volume book set is designed to provide the readers with a comprehensive and up-to-date account of the boundary element method and its application to solving engineering problems. Each volume is a self-contained book including a substantial amount of material not previously covered by other text books on the subject. Volume 1 covers applications to heat transfer, acoustics, electrochemistry and fluid mechanics problems, while volume 2 concentrates on solids and structures, describing applications to elasticity, plasticity, elastodynamics, fracture mechanics and contact analysis. The early chapters are designed as a teaching text for final year undergraduate courses. Both volumes reflect the experience of the authors over a period of more than twenty years of boundary element research. This volume, Applications in Solids and Structures, provides a comprehensive presentation of the BEM from fundamentals to advanced engineering applications and encompasses: Elasticity for 2D, 3D and Plates and Shells Non-linear, Transient and Thermal Stress Analysis Crack Growth and Multi-body Contact Mechanics Sensitivity Analysis and Optimisation Analysis of Assembled Structures. An important feature of this book is the in-depth presentation of BEM formulations in all the above fields, including detailed discussions of the basic theory, numerical algorithms and where possible simple examples are included, as well as test results for practical engineering applications of the method. Although most of the methods presented are the latest developments in the field, the author has included some simple techniques, which are helpful in understanding the computer implementation of BEM. Another notable feature is the comprehensive presentation of a new generation of boundary elements known as the Dual Boundary Element Method. Written by an internationally recognised authority in the field, this is essential reading for postgraduates, researchers and practitioners in Aerospace, Mechanical and Civil Engineering and Applied Mathematics.
Containing the proceedings from the 41st conference on Boundary Elements and other Mesh Reduction Methods (BEM/MRM), this book is a collection of high quality papers that report on advances in techniques that reduce or eliminate the type of meshes associated with such methods as finite elements or finite differences.
The book deals with the thermal and mechanical fracture of functionally graded materials on homogeneous substrate (FGM/H) structures. Emphasis is placed on multiple crack interactions. FGMs have a wide range of engineering applications; especially in thermal barrier coatings. Potentially desirable thermal and mechanical properties of functionally graded coatings (FGCs) are analyzed as well as available real material combinations, e.g. (ceramic/metal)/metal. Keywords: Thermal Fracture, Mechanical Fracture, Functionally Graded/Homogeneous Bimaterial, Thermo-Mechanical Loading, Mathematical Modelling, Thermal Stress Intensity, Fracture Criteria, Crack Closure, Systems of Cracks, Edge Cracks, Internal Cracks, Cracks Imitating a Curved Interface, Multiple Cracks Interaction, Thermal Barrier Coating, Thermal Fracture Resistance.
Mechanical responses of solid materials are governed by their material properties. The solutions for estimating and predicting the mechanical responses are extremely difficult, in particular for non-homogeneous materials. Among these, there is a special type of materials whose properties are variable only along one direction, defined as graded materials or functionally graded materials (FGMs). Examples are plant stems and bones. Artificial graded materials are widely used in mechanical engineering, chemical engineering, biological engineering, and electronic engineering. This work covers and develops boundary element methods (BEM) to investigate the properties of realistic graded materials. It is a must have for practitioners and researchers in materials science, both academic and in industry. Covers analysis of properties of graded materials. Presents solutions based methods for analysis of fracture mechanics. Presents two types of boundary element methods for layered isotropic materials and transversely isotropic materials. Written by two authors with extensive international experience in academic and private research and engineering.
The Boundary Element Methods (BEM) has become one of the most efficient tools for solving various kinds of problems in engineering science. The International Association for Boundary Element Methods (IABEM) was established in order to promote and facilitate the exchange of scientific ideas related to the theory and applications of boundary element methods. The aim of this symposium is to provide a forum for researchers in boundary element methods and boundary-integral formulations in general to present contemporary concepts and techniques leading to the advancement of capabilities and understanding of this com putational methodology. The topics covered in this symposium include mathematical and computational aspects, applications to solid mechanics, fluid mechanics, acoustics, electromagnetics, heat transfer, optimization, control, inverse problems and other interdisciplinary problems. Papers deal ing with the coupling of the boundary element method with other computational methods are also included. The editors hope that this volume presents some innovative techniques and useful knowl edge for the development of the boundary element methods. February, 1992 S. Kobayashi N. Nishimura Contents Abe, K.
An informative look at the theory, computer implementation, and application of the scaled boundary finite element method This reliable resource, complete with MATLAB, is an easy-to-understand introduction to the fundamental principles of the scaled boundary finite element method. It establishes the theory of the scaled boundary finite element method systematically as a general numerical procedure, providing the reader with a sound knowledge to expand the applications of this method to a broader scope. The book also presents the applications of the scaled boundary finite element to illustrate its salient features and potentials. The Scaled Boundary Finite Element Method: Introduction to Theory and Implementation covers the static and dynamic stress analysis of solids in two and three dimensions. The relevant concepts, theory and modelling issues of the scaled boundary finite element method are discussed and the unique features of the method are highlighted. The applications in computational fracture mechanics are detailed with numerical examples. A unified mesh generation procedure based on quadtree/octree algorithm is described. It also presents examples of fully automatic stress analysis of geometric models in NURBS, STL and digital images. Written in lucid and easy to understand language by the co-inventor of the scaled boundary element method Provides MATLAB as an integral part of the book with the code cross-referenced in the text and the use of the code illustrated by examples Presents new developments in the scaled boundary finite element method with illustrative examples so that readers can appreciate the significant features and potentials of this novel method—especially in emerging technologies such as 3D printing, virtual reality, and digital image-based analysis The Scaled Boundary Finite Element Method: Introduction to Theory and Implementation is an ideal book for researchers, software developers, numerical analysts, and postgraduate students in many fields of engineering and science.
This Proceedings features a broad range of computational mechanics papers on both solid and fluid mechanics as well as electromagnetics, acoustics, heat transfer and other interdisciplinary problems. Topics covered include theoretical developments, numerical analysis, intelligent and adaptive solution strategies and practical applications.