Download Free Thermodynamics Of Silicates Book in PDF and EPUB Free Download. You can read online Thermodynamics Of Silicates and write the review.

The intensification of the production of silicate materials and products makes a de tailed theoretical study of the processes underlying their manufacture and service more and more urgent. The thermodynamic method is of great importance for studying chemical reac tions of silicate technology. Together with a study of the rate and mechanism of sub stance transfer, it permits obtaining necessary data for the efficient operation of technological processes. The progress of science in recent years has solved numerous problems in the field of the physical chemistry of silicates. The great progress in deciphering silicate structures, and working out methods of the synthesis of minerals and studying their properties must be mentioned. New methods of determining thermic constants have appeared. In future these methods should be more widely used for determining the heats of the silicate forma tion and related compounds in crystalline and vitreous state. This concerns in par ticular the system - CaO - Ab03 - Fe203 - Si0 - H 0 -which is of great impor 2 2 tance for the technology of cement and concrete, ceramics, refractories and glass.
The intensification of the production of silicate materials and products makes a de tailed theoretical study of the processes underlying their manufacture and service more and more urgent. The thermodynamic method is of great importance for studying chemical reac tions of silicate technology. Together with a study of the rate and mechanism of sub stance transfer, it permits obtaining necessary data for the efficient operation of technological processes. The progress of science in recent years has solved numerous problems in the field of the physical chemistry of silicates. The great progress in deciphering silicate structures, and working out methods of the synthesis of minerals and studying their properties must be mentioned. New methods of determining thermic constants have appeared. In future these methods should be more widely used for determining the heats of the silicate forma tion and related compounds in crystalline and vitreous state. This concerns in par ticular the system - CaO - Ab03 - Fe203 - Si0 - H 0 -which is of great impor 2 2 tance for the technology of cement and concrete, ceramics, refractories and glass.
This book focuses on the experimental determination of the physical properties of silicate melts and magmas close to glass transition. Abundant new data are presented. The same type of measurement is performed on a range of melts to test the effect of composition on physical properties; and a range of different techniques are used to determine the same physical properties to illustrate the relationships between the relaxation of the melt structure and the relaxation of its physical properties. This book is of interest to experimental researchers in the discussion of data obtained from both a materials science and a geoscientific point of view.
During the last thirty years profound developments in expe- rimental techniques to measure high temperature and pressu- res and thermodynamic properties of minerals have occurred. This technical development has been matched by an increased sophistication in applying theoretical methods to obtain new data or improve the quality of existing data. Using these newtechniques, Assessed Thermodynamic Data on Oxides and Silicates represents the successful attempt of the authors to develop an internally systematized data base which satis- fies the constraints of calorimetric measurements, phase equilibrium data, measured thermophysical properties of a phase, and heat capacities and entropies estimated from lat- tice vibrational models.
The ever-increasing importance of chemical reactions at high and superhigh temperatures in crystalline, amorphous, and semicrystalline SOlids, as well as the reactions of these solids with gases, prompted the authors of this book to examine critically the literature available in this field and to present a general review of the subject. In this monograph we discuss those chemical and physicochemical points which we consider to be most important for solving a series of problems in the preparation and use of new inorganic materials. We hope that this book will be of interest to the many specialists working on inorganic materials. N. A. Toropov PREFACE Modem technology demands ever more materials with high mechanical strength, heat and chemical re sistance, fire resistance, special electrical properties, particular behavior toward active radiations, etc. The search for such materials requires the study of various chemical compounds, metallic alloys, and other fused in organic systems, especially oxide systems. Materials based on oxides begin to assume increasing importance in many fields of the new technology. In this connection the investigation of oxides and systems consisting of two and more oxides is expanding greatly.
Today large numbers of geoscientists apply thermodynamic theory to solu tions of a variety of problems in earth and planetary sciences. For most problems in chemistry, the application of thermodynamics is direct and rewarding. Geoscientists, however, deal with complex inorganic and organic substances. The complexities in the nature of mineralogical substances arise due to their involved crystal structure and multicomponental character. As a result, thermochemical solutions of many geological-planetological problems should be attempted only with a clear understanding of the crystal-chemical and thermochemical character of each mineral. The subject of physical geochemistry deals with the elucidation and application of physico-chemical principles to geosciences. Thermodynamics of mineral phases and crystalline solutions form an integral part of it. Developments in mineralogic thermody namics in recent years have been very encouraging, but do not easily reach many geoscientists interested mainly in applications. This series is to provide geoscientists and planetary scientists with current information on the develop ments in thermodynamics of mineral systems, and also provide the active researcher in this rapidly developing field with a forum through which he can popularize the important conclusions of his work. In the first several volumes, we plan to publish original contributions (with an abundant supply of back ground material for the uninitiated reader) and thoughtful reviews from a number of researchers on mineralogic thermodynamics, on the application of thermochemistry to planetary phase equilibria (including meteorites), and on kinetics of geochemical reactions.
This volume is part of the series on "Chemical Thermodynamics", published under the aegis of the OECD Nuclear Energy Agency. It contains a critical review of the literature on thermodynamic data for inorganic compounds of zirconium. A review team, composed of five internationally recognized experts, has critically reviewed all the scientific literature containing chemical thermodynamic information for the above mentioned systems. The results of this critical review carried out following the Guidelines of the OECD NEA Thermochemical Database Project have been documented in the present volume, which contains tables of selected values for formation and reaction thermodynamical properties and an extensive bibliography.* Critical review of all literature on chemical thermodynamics for compounds and complexes of Zr.* Tables of recommended Selected Values for thermochemical properties* Documented review procedure* Exhaustive bibliography* Intended to meet requirements of radioactive waste management community* Valuable reference source for the physical, analytical and environmental chemist.
Volume 32 of Reviews in Mineralogy introduces the basic concepts of melt physics and relaxation theory as applied to silicate melts, then to describe the current state of experimental and computer simulation techniques for exploring the detailed atomic structure and dynamic processes which occur at high temperature, and finally to consider the relationships between melt structure, thermodynamic properties and rheology within these liquids. These fundamental relations serve to bridge the extrapolation from often highly simplified melt compositions studied in the laboratory to the multicomponent systems found in nature. This volume focuses on the properties of simple model silicate systems, which are usually volatile-free. The behavior of natural magmas has been summarized in a previous Short Course volume (Nicholls and Russell, editors, 1990: Reviews in Mineralogy, Vol. 24), and the effect of volatiles on magmatic properties in yet another (Carroll and Holloway, editors, 1994: Vol. 30). The Mineralogical Society of America sponsored a short course for which this was the text at Stanford University December 9 and 10, 1995, preceding the Fall Meeting of the American Geophysical Union and MSA in San Fransisco, with about 100 professionals and graduate students in attendance.