Download Free Thermodynamics Of Complex Systems Hb Book in PDF and EPUB Free Download. You can read online Thermodynamics Of Complex Systems Hb and write the review.

"This text provides a concise introduction to non-equilibrium thermodynamics of open, complex systems using a first-principles approach. In the first chapters, the principles of thermodynamics of complex systems are discussed. The subsequent chapters apply the principles to the dynamics of chemical reactions and complex fluids, growth and development of biological organisms, and the dynamics of social structures and institutes. The final chapter discusses the principles of science as an artificial system.The book is a valuable reference text for researchers interested in thermodynamics and complex systems, and useful supplementary reading for graduate courses on advanced thermodynamics, thermodynamics of non-equilibrium systems and thermodynamics of complex/open systems." -- Prové de l'editor.
This text provides a concise introduction to non-equilibrium thermodynamics of open, complex systems using a first-principles approach. In the first chapters, the principles of thermodynamics of complex systems are discussed. The subsequent chapters apply the principles to the dynamics of chemical reactions and complex fluids, growth and development of biological organisms, and the dynamics of social structures and institutes. The final chapter discusses the principles of science as an artificial system. The book is a valuable reference text for researchers interested in thermodynamics and complex systems, and useful supplementary reading for graduate courses on advanced thermodynamics, thermodynamics of non-equilibrium systems and thermodynamics of complex/open systems. Key Features Provides a concise introduction to non-equilibrium thermodynamics of open complex systems, using a first-principles approach Discusses thermodynamics as the universal tool for the description of reality Looks at complex systems, such as biological organisms, populations and subsystems of human society from the perspective of thermodynamics Covers principles, applications and statistical interpretations
A brand-new conceptual look at dynamical thermodynamics This book merges the two universalisms of thermodynamics and dynamical systems theory in a single compendium, with the latter providing an ideal language for the former, to develop a new and unique framework for dynamical thermodynamics. In particular, the book uses system-theoretic ideas to bring coherence, clarity, and precision to an important and poorly understood classical area of science. The dynamical systems formalism captures all of the key aspects of thermodynamics, including its fundamental laws, while providing a mathematically rigorous formulation for thermodynamical systems out of equilibrium by unifying the theory of mechanics with that of classical thermodynamics. This book includes topics on nonequilibrium irreversible thermodynamics, Boltzmann thermodynamics, mass-action kinetics and chemical reactions, finite-time thermodynamics, thermodynamic critical phenomena with continuous and discontinuous phase transitions, information theory, continuum and stochastic thermodynamics, and relativistic thermodynamics. A Dynamical Systems Theory of Thermodynamics develops a postmodern theory of thermodynamics as part of mathematical dynamical systems theory. The book establishes a clear nexus between thermodynamic irreversibility, the second law of thermodynamics, and the arrow of time to further unify discreteness and continuity, indeterminism and determinism, and quantum mechanics and general relativity in the pursuit of understanding the most fundamental property of the universe—the entropic arrow of time.
This book offers a comprehensive overview of thermodynamics. It is divided into four parts, the first of which equips readers with a deeper understanding of the fundamental principles of thermodynamics of equilibrium states and of their evolution. The second part applies these principles to a series of generalized situations, presenting applications that are of interest both in their own right and in terms of demonstrating how thermodynamics, as a theory of principle, relates to different fields. In turn, the third part focuses on non-equilibrium configurations and the dynamics of natural processes. It discusses both discontinuous and continuous systems, highlighting the interference among non-equilibrium processes, and the nature of stationary states and of fluctuations in isolated systems. Lastly, part four introduces the relation between physics and information theory, which constitutes a new frontier in fundamental research. The book includes step-by-step exercises, with solutions, to help readers to gain a fuller understanding of the subjects, and also features a series of appendices providing useful mathematical formulae. Reflecting the content of modern university courses on thermodynamics, it is a valuable resource for students and young scientists in the fields of physics, chemistry, and engineering.
Small systems are a very active area of research and development due to improved instrumentation that allows for spatial resolution in the range of sizes from one to 100 nm. In this size range, many physical and chemical properties change, which opens up new approaches to the study of substances and their practical application. This affects both traditional fields of knowledge and many other new fields including physics, chemistry, biology, etc. This book highlights new developments in statistical thermodynamics that answer the most important questions about the specifics of small systems - when one cannot apply equations or traditional thermodynamic models.
This book aims at guiding the reader with continuity from the elements of classical equilibrium thermodynamics to the formal problems of global non equilibrium thermodynamics necessary to describe an ?active system? such is a thermodynamic ecosystem. To this purpose, the brief review of equilibrium thermodynamics emphasizes the concepts of disequilibrium, Carnot cycles and less efficient cycles, and Gibbs availability as the distance from equilibrium. In this way the reader is taken by hand to accept the concept of Gibbs efficiency of the ecosystem Earth as a property given to us by the cosmological evolution. The final chapters are devoted to the optimal control theory of global non-equilibrium systems. An elementary theory of zero energy thermodynamic automata is presented. A thermodynamic automation with four temperatures and three controls is discussed in detail.
In Molecular Thermodynamics of Complex Systems, the chapter authors critically examine not only the current state of the art in chemical research into structure and bonding, but also look at the direction the subject might take as it develops in future years.
In this volume (volume 1), the fundamental aspects of thermodynamics are presented. The first & second laws of thermodynamics are illustrated. The need to define thermodynamic temperature & the nature of entropy are explained. The book explores the meaning of auxiliary thermodynamic functions, the origin, usefulness & use of partial molar quantities. Gaseous systems & phase equilibrium, in systems where chemical reactions do not take place, are described In volume 2, the tools necessary to study & understand systems in which chemical reactions can take place are developed. The variables of reaction are the keys to understanding. Criteria for chemical equilibrium are established. It is shown how chemical reactions can provide work, as for example, in batteries. For complex systems, the number of independent reactions & their nature have to be determined systematically. The effect of external factors on chemical equilibria is analyzed & illustrated. The formalism necessary to study ideal & real solutions is provided. The various standard states in use & the corresponding activity coefficients are clearly defined. The statistical aspect of thermodynamics is best understood once students are familiar with the rest of the book, for this reason, is treated in the last chapter. Both volumes comply with the latest IUPC recommendations for symbols. Most of the specific mathematical tools are presented either directly in the text if they are used mostly in one chapter, while the others are included in an appendix. A primarily phenomenological approach has been selected to keep chemical thermodynamics easily accessible to beginners. Intermediate steps in the derivations have been kept to enhance the clarity of the presentation. A large number of problems, most of them original, will with complete solutions, are provided. They give this textbook a great pedagogical value. This book is primarily destined to students, graduate students & practicing scientists in the fields of Chemistry, Chemical Engineering & Material Sciences.