Download Free Thermodynamics For Engineers Book in PDF and EPUB Free Download. You can read online Thermodynamics For Engineers and write the review.

Although the basic theories of thermodynamics are adequately covered by a number of existing texts, there is little literature that addresses more advanced topics. In this comprehensive work the author redresses this balance, drawing on his twenty-five years of experience of teaching thermodynamics at undergraduate and postgraduate level, to produce a definitive text to cover thoroughly, advanced syllabuses. The book introduces the basic concepts which apply over the whole range of new technologies, considering: a new approach to cycles, enabling their irreversibility to be taken into account; a detailed study of combustion to show how the chemical energy in a fuel is converted into thermal energy and emissions; an analysis of fuel cells to give an understanding of the direct conversion of chemical energy to electrical power; a detailed study of property relationships to enable more sophisticated analyses to be made of both high and low temperature plant and irreversible thermodynamics, whose principles might hold a key to new ways of efficiently covering energy to power (e.g. solar energy, fuel cells). Worked examples are included in most of the chapters, followed by exercises with solutions. By developing thermodynamics from an explicitly equilibrium perspective, showing how all systems attempt to reach a state of equilibrium, and the effects of these systems when they cannot, the result is an unparalleled insight into the more advanced considerations when converting any form of energy into power, that will prove invaluable to students and professional engineers of all disciplines.
The book covers the classical areas of technical thermodynamics: The first part deals with the basic equations for energy conversion and idealized fluids. The second part deals with real fluids, which can be subject to a phase change, for example. Furthermore, thermodynamic mixtures of fluids are considered, e.g., humid air and gas mixtures. In the last part of the book, combustion processes and chemical reactions are presented and thermodynamically balanced. In each chapter, there are examples and exercises to deepen the theoretical knowledge. Compared to the first edition, the topic of thermodynamic state diagrams has been greatly revised. State diagrams of relevant refrigerants have been added as well as a formulary. The section on chemically reacting systems has been expanded and thoroughly revised. In the basic chapters, tasks and examples have been added to consolidate the understanding of the subject. The book is aimed at students of mechanical engineering and professional engineers.
Modern Engineering Thermodynamics - Textbook with Tables Booklet offers a problem-solving approach to basic and applied engineering thermodynamics, with historical vignettes, critical thinking boxes and case studies throughout to help relate abstract concepts to actual engineering applications. It also contains applications to modern engineering issues. This textbook is designed for use in a standard two-semester engineering thermodynamics course sequence, with the goal of helping students develop engineering problem solving skills through the use of structured problem-solving techniques. The first half of the text contains material suitable for a basic Thermodynamics course taken by engineers from all majors. The second half of the text is suitable for an Applied Thermodynamics course in mechanical engineering programs. The Second Law of Thermodynamics is introduced through a basic entropy concept, providing students a more intuitive understanding of this key course topic. Property Values are discussed before the First Law of Thermodynamics to ensure students have a firm understanding of property data before using them. Over 200 worked examples and more than 1,300 end of chapter problems provide an extensive opportunity to practice solving problems. For greater instructor flexibility at exam time, thermodynamic tables are provided in a separate accompanying booklet. University students in mechanical, chemical, and general engineering taking a thermodynamics course will find this book extremely helpful. Provides the reader with clear presentations of the fundamental principles of basic and applied engineering thermodynamics. Helps students develop engineering problem solving skills through the use of structured problem-solving techniques. Introduces the Second Law of Thermodynamics through a basic entropy concept, providing students a more intuitive understanding of this key course topic. Covers Property Values before the First Law of Thermodynamics to ensure students have a firm understanding of property data before using them. Over 200 worked examples and more than 1,300 end of chapter problems offer students extensive opportunity to practice solving problems. Historical Vignettes, Critical Thinking boxes and Case Studies throughout the book help relate abstract concepts to actual engineering applications. For greater instructor flexibility at exam time, thermodynamic tables are provided in a separate accompanying booklet.
Mechanical Engineering
This text provides an overview of important theory, principles, and concepts in the field of thermodynamics, making this abstract and complex subject easy to comprehend while building practical skills in the process. It enhances understanding of heat transfer, steam tables, energy concepts, power generation, psychrometry, refrigeration cycles, and more. Practical, easily accessible case studies illustrate various thermodynamics principles. Each chapter concludes with a list of questions or problems, with answers at the back of the book.
Enables you to easily advance from thermodynamics principles to applications Thermodynamics for the Practicing Engineer, as the title suggests, is written for all practicing engineers and anyone studying to become one. Its focus therefore is on applications of thermodynamics, addressing both technical and pragmatic problems in the field. Readers are provided a solid base in thermodynamics theory; however, the text is mostly dedicated to demonstrating how theory is applied to solve real-world problems. This text's four parts enable readers to easily gain a foundation in basic principles and then learn how to apply them in practice: Part One: Introduction. Sets forth the basic principles of thermodynamics, reviewing such topics as units and dimensions, conservation laws, gas laws, and the second law of thermodynamics. Part Two: Enthalpy Effects. Examines sensible, latent, chemical reaction, and mixing enthalpy effects. Part Three: Equilibrium Thermodynamics. Addresses both principles and calculations for phase, vapor-liquid, and chemical reaction equilibrium. Part Four: Other Topics. Reviews such important issues as economics, numerical methods, open-ended problems, environmental concerns, health and safety management, ethics, and exergy. Throughout the text, detailed illustrative examples demonstrate how all the principles, procedures, and equations are put into practice. Additional practice problems enable readers to solve real-world problems similar to the ones that they will encounter on the job. Readers will gain a solid working knowledge of thermodynamics principles and applications upon successful completion of this text. Moreover, they will be better prepared when approaching/addressing advanced material and more complex problems.
This is an introduction to thermodynamics for engineering students. No previous knowledge is assumed. The book covers the first and second laws of thermodynamics and their consequences for engineers. Each topic is illustrated with worked examples and subjects are introduced in a logical order allowing the student to tackle increasingly complex problems as he reads. Problems and selected answers are included. The heart of engineering thermodynamics is the conversion of heat into work. Increasing demands for more efficient conversion, for example to reduce carbon dioxide emissions, are leading to the adoption of new thermodynamic cycles. However the principles of these new cycles are very simple and are subject to the standard laws of thermodynamics as explained in this book.
Furthermore, a chapter on the microscopic implications of the entropy function and the second law is also included.