Download Free Thermodynamics And The Free Energy Of Chemical Substances Book in PDF and EPUB Free Download. You can read online Thermodynamics And The Free Energy Of Chemical Substances and write the review.

The scope of thermodynamics. Definitions; the concept of equilibrium. Conventions and mathematical methods. Solutions. The first law of thermodynamics and the concept of energy. The fugacity. Application of the second law to solutions. The perfect solution. The laws of the dilute solution. Systems involving variables other than pressure, temperature and composition. A useful function, called the activity, and its application to solutions. Change of activity with the temperature, and the calculation of activity from freezing points. The standard change of free energy; the equilibrium constant. Solutions of electrolytes. The activity of strong electrolytes. The activity of electrolytes from freezing point data, and tables of activity coefficients. Activity coefficient in mixed electrolytes; the principle of the ionic strength; the activity of individual ions. The galvanic cell. Single potentials; standard electrode potentials of the elements. The third law of thermodynamics. The entropy of monatomic gases and a table of atomic entropies. Introduction to systematic free energy calculations: the free energy of elementary hydrogen and metallic hydrides. Oxygen and its compouns with hydrogen and with some metals. Chlorine and its compouns. Bromine and its compounds. Iodine and its compounds. Nitrogen compounds. Carbon and some of its compounds. Compounds of carbon and nitrogen. Table of free energies; and examples illustrating its use. Conversion table for mol fractions, mol ratios and molities. Some useful numerical factors. Coefficients employed in converting activity, equilibrium constant and free energy from one temperature to another. Publications by the authrs, pertaining to thermodynamics.
Chemistry 2e is designed to meet the scope and sequence requirements of the two-semester general chemistry course. The textbook provides an important opportunity for students to learn the core concepts of chemistry and understand how those concepts apply to their lives and the world around them. The book also includes a number of innovative features, including interactive exercises and real-world applications, designed to enhance student learning. The second edition has been revised to incorporate clearer, more current, and more dynamic explanations, while maintaining the same organization as the first edition. Substantial improvements have been made in the figures, illustrations, and example exercises that support the text narrative. Changes made in Chemistry 2e are described in the preface to help instructors transition to the second edition.
A comprehensive introduction, examining both macroscopic and microscopic aspects of the subject, the book applies the theory of thermodynamics to a broad range of materials; from metals, ceramics and other inorganic materials to geological materials. Focusing on materials rather than the underlying mathematical concepts of the subject, this book will be ideal for the non-specialist requiring an introduction to the energetics and stability of materials. Macroscopic thermodynamic properties are linked to the underlying miscroscopic nature of the materials and trends in important properties are discussed. A unique approach covering both macroscopic and microscopic aspects of the subject Authors have worldwide reputations in this area Fills a gap in the market by featuring a wide range of real up-to-date examples and covering a large amount of materials
In order to quantitatively predict the chemical reactions that hazardous materials may undergo in the environment, it is necessary to know the relative stabilities of the compounds and complexes that may be found under certain conditions. This type of calculations may be done using consistent chemical thermodynamic data, such as those contained in this book for inorganic compounds and complexes of nickel.* Fully detailed authoritative critical review of literature.* Integrated into a comprehensive and consistent database for waste management applications.* CD ROM version.
This course-derived undergraduate textbook provides a concise explanation of the key concepts and calculations of chemical thermodynamics. Instead of the usual ‘classical’ introduction, this text adopts a straightforward postulatory approach that introduces thermodynamic potentials such as entropy and energy more directly and transparently. Structured around several features to assist students’ understanding, Chemical Thermodynamics : Develops applications and methods for the ready treatment of equilibria on a sound quantitative basis. Requires minimal background in calculus to understand the text and presents formal derivations to the student in a detailed but understandable way. Offers end-of-chapter problems (and answers) for self-testing and review and reinforcement, of use for self- or group study. This book is suitable as essential reading for courses in a bachelor and master chemistry program and is also valuable as a reference or textbook for students of physics, biochemistry and materials science.
This book develops the theory of chemical thermodynamics from first principles, demonstrates its relevance across scientific and engineering disciplines, and shows how thermodynamics can be used as a practical tool for understanding natural phenomena and developing and improving technologies and products. Concepts such as internal energy, enthalpy, entropy, and Gibbs energy are explained using ideas and experiences familiar to students, and realistic examples are given so the usefulness and pervasiveness of thermodynamics becomes apparent. The worked examples illustrate key ideas and demonstrate important types of calculations, and the problems at the end of chapters are designed to reinforce important concepts and show the broad range of applications. Most can be solved using digitized data from open access databases and a spreadsheet. Answers are provided for the numerical problems. A particular theme of the book is the calculation of the equilibrium composition of systems, both reactive and non-reactive, and this includes the principles of Gibbs energy minimization. The overall approach leads to the intelligent use of thermodynamic software packages but, while these are discussed and their use demonstrated, they are not the focus of the book, the aim being to provide the necessary foundations. Another unique aspect is the inclusion of three applications chapters: heat and energy aspects of processing; the thermodynamics of metal production and recycling; and applications of electrochemistry. This book is aimed primarily at students of chemistry, chemical engineering, applied science, materials science, and metallurgy, though it will be also useful for students undertaking courses in geology and environmental science. A solutions manual is available for instructors.
This book is ideal for use in a one-semester introductory course in physical chemistry for students of life sciences. The author's aim is to emphasize the understanding of physical concepts rather than focus on precise mathematical development or on actual experimental details. Subsequently, only basic skills of differential and integral calculus are required for understanding the equations. The end-of-chapter problems have both physiochemical and biological applications.