Download Free Thermodynamics And Regulation Of Biological Processes Book in PDF and EPUB Free Download. You can read online Thermodynamics And Regulation Of Biological Processes and write the review.

No detailed description available for "Thermodynamics and Regulation of Biological Processes".
"Yet another cell and molecular biology book? At the very least, you would think that if I was going to write a textbook, I should write one in an area that really needs one instead of a subject that already has multiple excellent and definitive books. So, why write this book, then? First, it's a course that I have enjoyed teaching for many years, so I am very familiar with what a student really needs to take away from this class within the time constraints of a semester. Second, because it is a course that many students take, there is a greater opportunity to make an impact on more students' pocketbooks than if I were to start off writing a book for a highly specialized upper- level course. And finally, it was fun to research and write, and can be revised easily for inclusion as part of our next textbook, High School Biology."--Open Textbook Library.
Biology for AP® courses covers the scope and sequence requirements of a typical two-semester Advanced Placement® biology course. The text provides comprehensive coverage of foundational research and core biology concepts through an evolutionary lens. Biology for AP® Courses was designed to meet and exceed the requirements of the College Board’s AP® Biology framework while allowing significant flexibility for instructors. Each section of the book includes an introduction based on the AP® curriculum and includes rich features that engage students in scientific practice and AP® test preparation; it also highlights careers and research opportunities in biological sciences.
This open access book is a systematic update of the philosophical and scientific foundations of the biopsychosocial model of health, disease and healthcare. First proposed by George Engel 40 years ago, the Biopsychosocial Model is much cited in healthcare settings worldwide, but has been increasingly criticised for being vague, lacking in content, and in need of reworking in the light of recent developments. The book confronts the rapid changes to psychological science, neuroscience, healthcare, and philosophy that have occurred since the model was first proposed and addresses key issues such as the model’s scientific basis, clinical utility, and philosophical coherence. The authors conceptualise biology and the psychosocial as in the same ontological space, interlinked by systems of communication-based regulatory control which constitute a new kind of causation. These are distinguished from physical and chemical laws, most clearly because they can break down, thus providing the basis for difference between health and disease. This work offers an urgent update to the model’s scientific and philosophical foundations, providing a new and coherent account of causal interactions between the biological, the psychological and social.
This novel, interdisciplinary text presents biological understanding in terms of general underlying principles, treating energy as the overarching theme and emphasizing the all-pervading influence of energy transformation in every process, both living and non-living. Key processes and concepts are explained in turn, culminating in a description of the overall functioning and regulation of a living cell. The book rounds off the story of life with a brief account of the endosymbiotic origins of eukaryotic cells, the development of multicellularity, and the emergence of modern plants and animals. Multidisciplinary research in science is becoming commonplace. However, as traditional boundaries start to break down, researchers are increasingly aware of the deficiencies in their knowledge of related disciplines. Introducing Biological Energetics redresses the reciprocal imbalance in the knowledge levels of physical and biological scientists in particular. Its style of presentation and depth of treatment has been carefully designed to unite these two readerships.
Natural phenomena consist of simultaneously occurring transport processes and chemical reactions. These processes may interact with each other and may lead to self-organized structures, fluctuations, instabilities, and evolutionary systems. Nonequilibrium Thermodynamics, Third Edition emphasizes the unifying role of thermodynamics in analyzing the natural phenomena. This third edition updates and expands on the first and second editions by focusing on the general balance equations for coupled processes of physical, chemical, and biological systems. The new edition contains a new chapter on stochastic approaches to include the statistical thermodynamics, mesoscopic nonequilibrium thermodynamics, fluctuation theory, information theory, and modeling the coupled biochemical systems in thermodynamic analysis. This new addition also comes with more examples and practice problems. - Informs and updates on all the latest developments in the field - Contributions from leading authorities and industry experts - A useful text for seniors and graduate students from diverse engineering and science programs to analyze some nonequilibrium, coupled, evolutionary, stochastic, and dissipative processes - Highlights fundamentals of equilibrium thermodynamics, transport processes and chemical reactions - Expands the theory of nonequilibrium thermodynamics and its use in coupled transport processes and chemical reactions in physical, chemical, and biological systems - Presents a unified analysis for transport and rate processes in various time and space scales - Discusses stochastic approaches in thermodynamic analysis including fluctuation and information theories - Has 198 fully solved examples and 287 practice problems - An Instructor Resource containing the Solution Manual can be obtained from the author: [email protected]
This inter-disciplinary guide to the thermodynamics of living organisms has been thoroughly revised and updated to provide a uniquely integrated overview of the subject. Retaining its highly readable style, it will serve as an introduction to the study of energy transformation in the life sciences and particularly as an accessible means for biology, biochemistry and bioengineering undergraduate students to acquaint themselves with the physical dimension of their subject. The emphasis throughout the text is on understanding basic concepts and developing problem-solving skills. The mathematical difficulty increases gradually by chapter, but no calculus is required. Topics covered include energy and its transformation, the First Law of Thermodynamics, Gibbs free energy, statistical thermodynamics, binding equilibria and reaction kinetics. Each chapter comprises numerous illustrative examples taken from different areas of biochemistry, as well as a broad range of exercises and references for further study.
This book provides the first systematic treatment of the thermodynamic theory of site-specific effects in biological macromolecules. It describes the phenomenological and conceptual bases required to allow a mechanistic understanding of these effects from analysis of experimental data. The thermodynamic theory also results in novel experimental strategies that enable the derivation of information on local, site-specific properties of a macromolecular system from analysis of perturbed global properties. The treatment focuses on binding phenomena, but is amenable to extension both conceptually and formally to the analysis of other cooperative processes, such as folding and helix-coil transitions. This book will interest any scientist involved in structure-function studies of biological macromolecules, or as a text for graduate students in biochemistry and biophysics.