Download Free Thermochemical Ethanol Via Direct Gasification And Mixed Alcohol Synthesis Of Lignocellulosic Biomass Book in PDF and EPUB Free Download. You can read online Thermochemical Ethanol Via Direct Gasification And Mixed Alcohol Synthesis Of Lignocellulosic Biomass and write the review.

This work continues the study of thermochemical conversion processes for biomass to ethanol. An earlier study by Phillips et al. (NREL/TP-510-41168) looked into a process that used an indirect gasifier and showed that the process is capable of producing cost-competitive cellulosic ethanol below the $1.07 per gallon minimum plant gate price targeted in 2012 using 2005 cost assumptions. A high-pressure oxygen-blown direct gasifier is used in this study. The conversion costs for this process are higher than the 2012 cost target. This is primarily because of two reasons, 1) Extra capital cost of an air-separation unit, and 2) Lower conversion of methane to syngas after reformation at the higher pressures in this process. The minimum ethanol selling price (MESP) for the base case process was $1.57/gallon using 2005 cost assumptions, compared with $1.01/ gallon in the indirect gasification process. The MESP was $1.95/gallon using 2007 cost assumptions and 2012 performance targets (compared with $1.29/gallon for the indirect process).
This report evaluates process design and technoeconomic criteria for a direct gasification process for conversion of biomass to ethanol. Follow-up to NREL/TP-510-41168.
This process design and technoeconomic evaluation addresses the conversion of biomass to ethanol via thermochemical pathways that are expected to be demonstrated at the pilot level by 2012.
This process design and technoeconomic evaluation addresses the conversion of biomass to ethanol via thermochemical pathways that are expected to be demonstrated at the pilot-unit level by 2012.
This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work. This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
This design report describes an up-to-date benchmark thermochemical conversion process that incorporates the latest research from NREL and other sources. Building on a design report published in 2007, NREL and its subcontractor Harris Group Inc. performed a complete review of the process design and economic model for a biomass-to-ethanol process via indirect gasification. The conceptual design presented herein considers the economics of ethanol production, assuming the achievement of internal research targets for 2012 and nth-plant costs and financing.
This report presents a cost analysis of second generation Ethanol production from wood chips via a thermochemical process. The process examined is similar to the one reported by the National Renewable Energy Laboratory (NREL). In this process, biomass is subjected to gasification generating syngas, which is then converted to hydrous Ethanol. The process employs concepts similar to those proposed in patents issued to Range Fuels. Mixed alcohols are generated as by-products. This report examines one-time costs associated with the construction of a United States-based plant and the continuing costs associated with the daily operation of such a plant. More specifically, it discusses: * Capital Investment, broken down by: - Total fixed capital required, divided in production unit (ISBL); infrastructure (OSBL) and contingency - Alternative perspective on the total fixed capital, divided in direct costs, indirect costs and contingency - Working capital and costs incurred during industrial plant commissioning and start-up * Production cost, broken down by: - Manufacturing variable costs (raw materials, utilities) - Manufacturing fixed costs (maintenance costs, operating charges, plant overhead, local taxes and insurance) - Depreciation and corporate overhead costs * Raw materials consumption, products generation and labor requirements * Process block flow diagram and description of industrial site installations (production unit and infrastructure) This report was developed based essentially on the following reference(s): Phillips, S., et al., "Thermochemical Ethanol via Indirect Gasification and Mixed Alcohol Synthesis of Lignocellulosic Biomass, " Report NREL/TP-510-41168, National Renewable Energy Laboratory (NREL), 2007 Keywords: Ethyl Alcohol, Bioethanol, Lignocellulosic Biomass, 2nd Generation, Cellulosic Sugar, Hemicelluloses, Cellulose
The volume on Industrial Crop Breeding will be part of the series, Handbook of Plant Breeding. This volume will focus on the emerging area of plant breeding for sustainable production of transportation fuels and bio based products using the current advances in the field. The book is scheduled to consist of a total number of 30 chapters divided into four sections. The sections will emphasize crops being considered for different challenge areas including oil crops for biodiesel; sugar, starch and cellulosic crops for biofuel; crops for bio products and issues and future prospects. A chapter introducing the first three sections will also be included. Outstanding scientists for each crop species are proposed as senior authors, who may invite co-authors to contribute part of a chapter to provide additional expertise or perspective. The proposed authors will represent various national and international institutions to get a more diverse view on the topic and somehow get a global view on the common issues that researchers on industrial crops are facing. The book will comprise primarily of specific issues, available germplasm, breeding techniques, and potential geographical areas of production pertaining to individual crops being considered for industrial uses. We hope to encourage the proposed authors of new crops to provide an estimate of the crop readiness for commercial development and discuss the limitations. This book will be will be of interest and envisioned to serve as an updated reference to researchers in both academic and industrial setting, to students and teachers of plant breeding and to policy makers who are looking for alternative solutions to dependency on imported petroleum products.
Details energy and exergy efficiencies of all major aspects of bioenergy systems Covers all major bioenergy processes starting from photosynthesis and cultivation of biomass feedstocks and ending with final bioenergy products, like power, biofuels, and chemicals Each chapter includes historical developments, chemistry, major technologies, applications as well as energy, environmental and economic aspects in order to serve as an introduction to biomass and bioenergy A separate chapter introduces a beginner in easy accessible way to exergy analysis and the similarities and differences between energy and exergy efficiencies are underlined Includes case studies and illustrative examples of 1st, 2nd, and 3rd generation biofuels production, power and heat generation (thermal plants, fuel cells, boilers), and biorefineries Traditional fossil fuels-based technologies are also described in order to compare with the corresponding bioenergy systems
26th European Symposium on Computer Aided Process Engineering contains the papers presented at the 26th European Society of Computer-Aided Process Engineering (ESCAPE) Event held at Portorož Slovenia, from June 12th to June 15th, 2016. Themes discussed at the conference include Process-product Synthesis, Design and Integration, Modelling, Numerical analysis, Simulation and Optimization, Process Operations and Control and Education in CAPE/PSE. Presents findings and discussions from the 26th European Society of Computer-Aided Process Engineering (ESCAPE) Event