Download Free Thermochemical And Sugar Routes To Ethanol And Other Alcohols From Lignocellulosic Biomass Book in PDF and EPUB Free Download. You can read online Thermochemical And Sugar Routes To Ethanol And Other Alcohols From Lignocellulosic Biomass and write the review.

Comprehensive coverage on the growing science and technology of producing ethanol from the world's abundant cellulosic biomass The inevitable decline in petroleum reserves and its impact on gasoline prices, combined with climate change concerns, have contributed to current interest in renewable fuels. Bioethanol is the most successful renewable transport fuel—with corn and sugarcane ethanol currently in wide use as blend-in fuels in the United States, Brazil, and a few other countries. However, there are a number of major drawbacks in these first-generation biofuels, such as their effect on food prices, net energy balance, and poor greenhouse gas mitigation. Alternatively, cellulosic ethanol can be produced from abundant lignocellulosic biomass forms such as agricultural or municipal wastes, forest residues, fast growing trees, or grasses grown in marginal lands, and should be producible in substantial amounts to meet growing global energy demand. The Handbook of Cellulosic Ethanol covers all aspects of this new and vital alternative fuel source, providing readers with the background, scientific theory, and recent research progress in producing cellulosic ethanol via different biochemical routes, as well as future directions. The seventeen chapters include information on: Advantages of cellulosic ethanol over first-generation ethanol as a transportation fuel Various biomass feedstocks that can be used to make cellulosic ethanol Details of the aqueous phase or cellulolysis route, pretreatment, enzyme or acid saccharification, fermentation, simultaneous saccharification fermentation, consolidated bioprocessing, genetically modified microorganisms, and yeasts Details of the syngas fermentation or thermochemical route, gasifiers, syngas cleaning, microorganisms for syngas fermentation, and chemical catalysts for syngas-to-ethanol conversion Distillation and dehydration to fuel-grade ethanol Techno-economical aspects and the future of cellulosic ethanol Readership Chemical engineers, chemists, and technicians working on renewable energy and fuels in industry, research institutions, and universities. The Handbook can also be used by students interested in biofuels and renewable energy issues.
This up-to-date overview on the conversion of thermochemical biomass to fuels and chemicals is written by experts in the field.
This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work. This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
This book provides an overview of the multi-dimensional approach for the production of ethanol from lignocellulosic biomass. The sustainability of this biofuel, the current and future status of the technology and its role in waste valorization are also addressed. Bioethanol from lignocellulosic material has emerged as an alternative to the traditional first-generation bioethanol. The book also discusses various pretreatment methods for effective separation of the various components of lignocellulosic feedstock as well as their advantages, and limitations. It describes the valorization of lignocellulosic waste through the production of bioethanol and emphasizes the significance of waste utilization in managing the production cost of the fuel. Finally, the utilization of genetically engineered plants and microorganisms to increase the conversion efficiency is reviewed.
This book focuses on the basic science recently produced in Brazil for the improvement of sugarcane as a bioenergy crop and as a raw material for 2nd generation bioethanol production. It reports achievements that have been advancing the science of cell walls, enzymes, genetics, and sustainability related to sugarcane technologies and give continuity to the research reported in the “Routes to Cellulosic Ethanol”, from Springer. The Introduction (Chapter I) explains how the National Institute of Science and Technology of Bioethanol, founded in 2008 in Brazil, became part of the main international initiatives that started to search for forms to use biomass for bioethanol production in Brazil, US and Europe. Part I reports the advances in plant cell wall composition, structure and architecture, and physical characteristics of sugarcane biomass. These discoveries are opening the way to increased efficiency of pretreatments and hydrolysis, being therefore important information for 2nd generation processes as well as for biorefinery initiatives. Part II focuses on the discovery and characterization of hydrolases from microorganisms that could be used in industrial processes. Recent advances in the search for hydrolases using metagenomics is reported. A great number of genes and enzymes from microorganisms have been discovered, affording improvement of enzyme cocktails better adapted to sugarcane biomass. Part III reports two key issues in the process of 2G ethanol, pentose fermentation and sugarcane genetics. These are the discoveries of new yeast species capable of producing ethanol more efficiently from xylose and the advances made on the sugarcane genetics, a key issue to design varieties adapted to 2G ethanol production. Part IV approaches sustainability through two chapters, one discussing the sustainability of the sugarcane agricultural and environmental system and another discussing how national and mainly international policies of Brazil regarding 2G ethanol production affected the country’s strategies to establish itself as an international player in renewable energy area.
Details energy and exergy efficiencies of all major aspects of bioenergy systems Covers all major bioenergy processes starting from photosynthesis and cultivation of biomass feedstocks and ending with final bioenergy products, like power, biofuels, and chemicals Each chapter includes historical developments, chemistry, major technologies, applications as well as energy, environmental and economic aspects in order to serve as an introduction to biomass and bioenergy A separate chapter introduces a beginner in easy accessible way to exergy analysis and the similarities and differences between energy and exergy efficiencies are underlined Includes case studies and illustrative examples of 1st, 2nd, and 3rd generation biofuels production, power and heat generation (thermal plants, fuel cells, boilers), and biorefineries Traditional fossil fuels-based technologies are also described in order to compare with the corresponding bioenergy systems
This design report describes an up-to-date benchmark thermochemical conversion process that incorporates the latest research from NREL and other sources. Building on a design report published in 2007, NREL and its subcontractor Harris Group Inc. performed a complete review of the process design and economic model for a biomass-to-ethanol process via indirect gasification. The conceptual design presented herein considers the economics of ethanol production, assuming the achievement of internal research targets for 2012 and nth-plant costs and financing.