Download Free Thermal Transport In Graphene Based Nanostructures And Other Two Dimensional Materials Book in PDF and EPUB Free Download. You can read online Thermal Transport In Graphene Based Nanostructures And Other Two Dimensional Materials and write the review.

There are only a few discoveries and new technologies in materials science that have the potential to dramatically alter and revolutionize our material world. Discovery of two-dimensional (2D) materials, the thinnest form of materials to ever occur in nature, is one of them. After isolation of graphene from graphite in 2004, a whole other class of atomically thin materials, dominated by surface effects and showing completely unexpected and extraordinary properties, has been created. This book provides a comprehensive view and state-of-the-art knowledge about 2D materials such as graphene, hexagonal boron nitride (h-BN), transition metal dichalcogenides (TMD) and so on. It consists of 11 chapters contributed by a team of experts in this exciting field and provides latest synthesis techniques of 2D materials, characterization and their potential applications in energy conservation, electronics, optoelectronics and biotechnology.
A detailed primer describing the most effective theoretical and computational methods and tools for simulating graphene-based systems.
Learn about the most recent advances in 2D materials with this comprehensive and accessible text. Providing all the necessary materials science and physics background, leading experts discuss the fundamental properties of a wide range of 2D materials, and their potential applications in electronic, optoelectronic and photonic devices. Several important classes of materials are covered, from more established ones such as graphene, hexagonal boron nitride, and transition metal dichalcogenides, to new and emerging materials such as black phosphorus, silicene, and germanene. Readers will gain an in-depth understanding of the electronic structure and optical, thermal, mechanical, vibrational, spin and plasmonic properties of each material, as well as the different techniques that can be used for their synthesis. Presenting a unified perspective on 2D materials, this is an excellent resource for graduate students, researchers and practitioners working in nanotechnology, nanoelectronics, nanophotonics, condensed matter physics, and chemistry.
Graphene to Polymer/Graphene Nanocomposites: Emerging Research and Opportunities brings together the latest advances and cutting-edge methods in polymer/graphene nanocomposites that offer attractive properties and features, leading to a broad range of valuable applications. The initial chapters of this book explain preparation, properties, modification, and applications of graphene and graphene-based multifunctional polymeric nanocomposites. Later, the state-of-the-art potential of polymer/graphene nanocomposites for hierarchical nanofoams, graphene quantum dots, graphene nanoplatelets, graphene nanoribbons, etc., has been elucidated. The subsequent chapters focus on specific innovations and applications including stimuli-responsive graphene-based materials, anticorrosive coatings, applications in electronics and energy devices, gas separation and filtration membrane applications, aerospace applications, and biomedical applications. Throughout the book, challenges, and future opportunities in the field of polymer/graphene nanocomposites are discussed and analyzed. This is an important resource for researchers, scientists, and students/academics working with graphene and across the fields of polymer composites, nanomaterials, polymer science, chemistry, chemical engineering, biomedical engineering, materials science, and engineering, as well those in an industrial setting who are interested in graphene or innovative materials. Explores the fundamentals, preparation, properties, processing, and applications of graphene and multifunctional polymer-graphene nanocomposites. Focuses on the state of the art including topics such as nano-foam architectures, graphene quantum dots, graphene nanoplatelets, graphene nanoribbons, and other graphene nanostructures. Provides advanced applications including shape memory materials, anticorrosion materials, electronics and energy devices, gas separation and filtration membranes, aerospace relevance, and biomedical applications.
Thermoelectricity and Heat Transport in Graphene and Other 2D Nanomaterials describes thermoelectric phenomena and thermal transport in graphene and other 2-dimentional nanomaterials and devices. Graphene, which is an example of an atomic monolayered material, has become the most important growth area in materials science research, stimulating an interest in other atomic monolayeric materials. The book analyses flow management, measurement of the local temperature at the nanoscale level and thermoelectric transducers, with reference to both graphene and other 2D nanomaterials. The book covers in detail the mechanisms of thermoelectricity, thermal transport, interface phenomena, quantum dots, non-equilibrium states, scattering and dissipation, as well as coherent transport in low-dimensional junctions in graphene and its allotropes, transition metal dichalcogenides and boron nitride. This book aims to show readers how to improve thermoelectric transducer efficiency in graphene and other nanomaterials. The book describes basic ingredients of such activity, allowing readers to gain a greater understanding of fundamental issues related to the heat transport and the thermoelectric phenomena of nanomaterials. It contains a thorough analysis and comparison between theory and experiments, complemented with a variety of practical examples. - Shows readers how to improve the efficiency of heat transfer in graphene and other nanomaterials with analysis of different methodologies - Includes fundamental information on the thermoelectric properties of graphene and other atomic monolayers, providing a valuable reference source for materials scientists and engineers - Covers the important models of thermoelectric phenomena and thermal transport in the 2D nanomaterials and nanodevices, allowing readers to gain a greater understanding of the factors behind the efficiency of heat transport in a variety of nanomaterials
This book focuses on the theory of phonon interactions in nanoscale structures with particular emphasis on modern electronic and optoelectronic devices. The continuing progress in the fabrication of semiconductor nanostructures with lower dimensional features has led to devices with enhanced functionality and even novel devices with new operating principles. The critical role of phonon effects in such semiconductor devices is well known. There is therefore a great need for a greater awareness and understanding of confined phonon effects. A key goal of this book is to describe tractable models of confined phonons and how these are applied to calculations of basic properties and phenomena of semiconductor heterostructures. The level of presentation is appropriate for undergraduate and graduate students in physics and engineering with some background in quantum mechanics and solid state physics or devices. A basic understanding of electromagnetism and classical acoustics is assumed.
Understanding non-equilibrium properties of classical and quantum many-particle systems is one of the goals of contemporary statistical mechanics. Besides its own interest for the theoretical foundations of irreversible thermodynamics(e.g. of the Fourier's law of heat conduction), this topic is also relevant to develop innovative ideas for nanoscale thermal management with possible future applications to nanotechnologies and effective energetic resources. The first part of the volume (Chapters 1-6) describes the basic models, the phenomenology and the various theoretical approaches to understand heat transport in low-dimensional lattices (1D e 2D). The methods described will include equilibrium and nonequilibrium molecular dynamics simulations, hydrodynamic and kinetic approaches and the solution of stochastic models. The second part (Chapters 7-10) deals with applications to nano and microscale heat transfer, as for instance phononic transport in carbon-based nanomaterials, including the prominent case of nanotubes and graphene. Possible future developments on heat flow control and thermoelectric energy conversion will be outlined. This volume aims at being the first step for graduate students and researchers entering the field as well as a reference for the community of scientists that, from different backgrounds (theoretical physics, mathematics, material sciences and engineering), has grown in the recent years around those themes.
This is a graduate level textbook in nanoscale heat transfer and energy conversion that can also be used as a reference for researchers in the developing field of nanoengineering. It provides a comprehensive overview of microscale heat transfer, focusing on thermal energy storage and transport. Chen broadens the readership by incorporating results from related disciplines, from the point of view of thermal energy storage and transport, and presents related topics on the transport of electrons, phonons, photons, and molecules. This book is part of the MIT-Pappalardo Series in Mechanical Engineering.
This Special Issue includes recent research articles and extensive reviews on graphene-based next-generation electronics, bringing together perspectives from different branches of science and engineering. The papers presented in this volume cover experimental, computational and theoretical aspects of the electrical and thermal properties of graphene and its applications in batteries, electrodes, sensors and ferromagnetism. In addition, this Special Issue covers many important state-of-the-art technologies and methodologies regarding the synthesis, fabrication, characterization and applications of graphene-based nanocomposites.
Graphene is one of the most intensively studied materials, and has unusual electrical, mechanical and thermal properties, which provide almost unlimited potential applications. This book provides an introduction to the electrical and transport properties of graphene and other two-dimensional nanomaterials, covering ab-initio to multiscale methods. Updated from the first edition, the authors have added chapters on other two-dimensional materials, spin-related phenomena, and an improved overview of Berry phase effects. Other topics include powerful order N electronic structure, transport calculations, and ac transport and multiscale transport methodologies. Chapters are complemented with concrete examples and case studies, questions and exercises, detailed appendices and computational codes. It is a valuable resource for graduate students and researchers working in physics, materials science or engineering who are interested in the field of graphene-based nanomaterials.