Download Free Thermal Sprayed Coatings And Their Tribological Performances Book in PDF and EPUB Free Download. You can read online Thermal Sprayed Coatings And Their Tribological Performances and write the review.

Thermal spraying is a dynamic process and a rapidly changing field which is used in a variety of industries to solve a number of challenging problems including performance enhancement and extending the life of industrial components which are subjected to wear corrosion. Thermal Sprayed Coatings and their Tribological Performances showcases the latest research surrounding the development and use of thermal spraying techniques as well as the benefits of using thermal sprayed coatings in the industrial sector. Focusing on practical solutions that can be applied to real-world settings, this publication is ideally designed for academicians, upper-level students, as well as engineers and operations managers across industries.
"This book showcases the latest research surrounding the development and use of thermal spraying techniques as well as the benefits of using thermal sprayed coatings in the industrial sector, focusing on practical solutions that can be applied to real-world settings"--
Advances are continuously being made in applying the coatings and surface treatments by different techniques to reduce the damages from tribology. Engineers need more detailed information to compare the capability of each coating process in wear resistant and lubrication applications. It is also important to focus on the concepts of tribology in various applications such as the manufacturing process, bio implants, machine elements, and corrosive environments. The need for a comprehensive resource addressing these findings in order to improve wear resistance is unavoidable. The Handbook of Research on Tribology in Coatings and Surface Treatment evaluates the latest advances the fabrication of wear-resistant and lubricant coatings by different techniques and investigates wear-resistant coatings and surface treatments in various applications such as the automobile industry. Covering a wide range of topics such as lubricant coatings and wearable electronic devices, it is ideal for engineers, industry professionals, researchers, academicians, scholars, practitioners, instructors, and students.
Surface Engineering constitutes a variety of processes and sub processes. Each chapter of this work covers specific processes by experts working in the area. Included for each topic are tribological performances for each process as well as results of recent research. The reader also will benefit from in-depth studies of diffusion coatings, nanocomposite films for wear resistance, surfaces for biotribological applications, thin-film wear, tribology of thermal sprayed coatings, hardfacing, plating for tribology and high energy beam surface modifications. Material scientists as well as engineers working with surface engineering for tribology will be particularly interested in this work.
This book presents select proceedings of the International Conference on Future Learning Aspects of Mechanical Engineering (FLAME 2020). This book, in particular, focuses on characterizing materials using novel techniques. It covers a variety of advanced materials, viz. composites, coatings, nanomaterials, materials for fuel cells, biomaterials among others. The book also discusses advanced characterization techniques like X-ray photoelectron, UV spectroscopy, scanning electron, atomic power, transmission electron and laser confocal scanning fluorescence microscopy, and gel electrophoresis chromatography. This book gives the readers an insight into advanced material processes and characterizations with special emphasis on nanotechnology.
This comprehensive book explores the techniques, materials, and real-world applications of thermal spray coatings across various industries, including power generation, aerospace, medical, and automotive sectors. Readers will learn about the basic science and engineering aspects of thermal spray technology, its historical developments, and the diverse range of materials used, from metallic to ceramic materials, and nano-crystallization materials. Distinct thermal spray techniques are explained (flame spray, detonation-gun spray, high-velocity oxy-fuel spray, electric arc spray, plasma spray and cold spray). Chapters on advanced topics also give an understanding of crucial material properties such as high temperature corrosion, oxidation, erosion or wear resistance, and biocompatibility. Key features - Contributions from materials science experts with references for each topic - Gives a comprehensive overview of materials and distinct spray techniques used in thermal coatings - Dedicated chapters for applications of thermal coatings in different industries - Covers recent trends and new advances such as surface modification techniques to improve functionality and performance This book is intended as a resource for an in-depth understanding of the fundamentals and applications of thermal spray coatings for students, professionals and researchers in materials science and chemical engineering disciplines.
This book combines the contributions of experts in the field to describe the behavior of various materials, micromechanisms involved during processing, and the optimization of cold-spray technology. It spans production, characterization, and applications including wear resistance, fatigue, life improvement, thermal barriers, crack repair, and biological applications. Cold spray is an innovative coating technology based on the kinetic energy gained by particles sprayed at very high pressures. While the technique was developed in the 1990s, industrial and scientific interest in this technology has grown vastly in the last ten years. Recently, many interesting applications have been associated with cold-sprayed coatings, including wear resistance, fatigue life improvement, thermal barriers, biological applications, and crack repair. However, many fundamental aspects require clarification and description.
Ceramic materials in the form of coatings can significantly improve the functionality and applications of other engineering materials. Due to a wide range of controllable features and various deposition methods, it is possible to create tailored substrate–coating systems that meet the requirements of modern technologies. Therefore, it is crucial to understand the relationships between the structures, morphology and the properties of ceramic coatings and expand the base of scientific knowledge about them. This book contains a series of fourteen articles which present research on the production and properties of ceramic coatings designed to improve functionality for advanced applications.
Tribology of Polymers, Polymer Composites, and Polymer Nanocomposites combines fundamental knowledge with the latest findings in the area of polymer tribology. From testing of property-related mechanisms to prediction of wear using artificial neural networks, the book explores all relevant polymer types, including elastomers, epoxy-based, nylon, and more while also discussing their different types of reinforcement, such as particulates, short fibers, natural fibers, and beyond. New developments in sustainable materials, environmental effects, nanoscaled fillers, and self-lubrication are each discussed, as are applications of these materials, guidelines for when to use certain polymer systems, and functional groups of polymers. Experimental methods and modeling and prediction techniques are also outlined. The tribology of graphene-based, biodegradable, hybrid nanofiller/polymer nanocomposites and other types of polymers is discussed at length. - Synthesizes the latest cutting-edge research in the tribological behaviors and applications of polymeric materials - Covers all relevant polymer types and concepts, including elastomers and natural fibers, different types of reinforcement materials, sustainable materials, interfacial modifiers and the environmental effects of self-lubrication - Outlines modeling techniques and how filler-matrix pairings and other approaches can control wear mechanisms
Surface engineering is considered an important aspect in the reduction of friction and wear. This reference text discusses a wide range of surface engineering technologies along with applications in a comprehensive manner. The book describes various methods in surface engineering technology with a thorough explanation of various aspects of each process that comes under this domain. Apart from an enhanced explanation of the process and its attributes, this book also gives insight into the types of materials, applications, and optimization of surface engineering techniques. It discusses important topics including surface engineering of the functionality of graded materials, materials characterization, processing of biomaterials, design, surface modification technologies and process control, smart manufacturing, artificial intelligence, and machine learning applications. The book: discusses computational and simulation analyses for better selection of process parameters covers optimizations of processes with state-of-the-art technologies discusses applications of surface engineering in medical, agricultural, architecture engineering, and allied sectors covers processing techniques of biomaterials in surface engineering The text is useful for senior undergraduate, graduate students, and academic researchers working in diverse areas such as industrial and production engineering, mechanical engineering, materials science, and manufacturing science. It covers a hybrid process for surface modification, modeling techniques, and issues in surface engineering.