Download Free Thermal Performance Of The Exterior Envelopes Of Buildings Vii Book in PDF and EPUB Free Download. You can read online Thermal Performance Of The Exterior Envelopes Of Buildings Vii and write the review.

This text provides a broad view of the research performed in building physics at the start of the 21st century. The focus of this conference was on combined heat and mass flow in building components, performance-based design of building enclosures, energy use in buildings, sustainable construction, users' comfort and health, and the urban micro-climate.
Performance-Based Building Design This third book in a series of three dealing with building physics and its application, looks to the impact a performance requirements linked approach has on building design and construction. It starts with a resumption of what’s expected from buildings, followed by discussing a range of materials needed to guarantee a correct heat, air, moisture response. Then, looked is to preparing the building site, the excavations needed, the foundations, the below-grade parts and spaces, the structural systems commonly used, the floors, different types of outer walls, different types of roof assemblies, inside walls, the glazing, windows, outer doors, glass façades, bal-conies, all kind of shafts, chimneys, stairs, timber-frame construction, wall, floor and ceiling finishes. Each time again, not only the heat, air, moisture related metrics but also structural integrity, durability, fire safety, acoustics, maintenance, sustainability and buildability are dis- cussed. The whole ends with looking to the risks deficiencies may cause. For this new edition, all chapters have been critically reviewed, actualized and gifted with additional figures where needed, so incorporating the experiences gained from 38 years of teaching to architectural and building engineering students, from 36 years of research, and from 53 years of practice, curing damage cases due to failing performance.
Buildings influence people. They account for one third of energy consumption across the globe and represent an annual capital expenditure of 7%-10% of GNP in industrialized countries. Their lifetime operation costs can exceed capital investment. Building Engineering aims to make buildings more efficient, safe and economical. One branch of this discipline, Building Physics/Science, has gained prominence, with a heightened awareness of such phenomena as sick buildings, the energy crisis and sustainability, and considering the performance of buildings in terms of climatic loads and indoor conditions. The book reflects the advanced level and high quality of research which Building Engineering, and Building Physics/Science in particular, have reached at the beginning of the twenty-first century. It will be a valuable resource to: engineers, architects, building scientists, consultants on the building envelope, researchers and graduate students.
This volume brings together outstanding contributions to the Gulf Conference on Sustainable Built Environment, held at the Marina Hotel Kuwait, near Kuwait City. The Proceedings collects 29 papers on a range of engineering and materials challenges, and best practices, addressing development of new sustainable building materials, performance improvement of structures and tall buildings, developing monitoring and analysis techniques and frameworks for existing infrastructure under environmental effects, development of long-term sustainability plans for building stock, and development of energy efficient buildings in the gulf region. The Conference was organized by the Kuwait Foundation for the Advancement of Sciences (KFAS), the Massachusetts Institute of Technology, the Kuwait Institute for Scientific Research, and Kuwait University.
The 8-volume set contains the Proceedings of the 25th ECOS 2012 International Conference, Perugia, Italy, June 26th to June 29th, 2012. ECOS is an acronym for Efficiency, Cost, Optimization and Simulation (of energy conversion systems and processes), summarizing the topics covered in ECOS: Thermodynamics, Heat and Mass Transfer, Exergy and Second Law Analysis, Process Integration and Heat Exchanger Networks, Fluid Dynamics and Power Plant Components, Fuel Cells, Simulation of Energy Conversion Systems, Renewable Energies, Thermo-Economic Analysis and Optimisation, Combustion, Chemical Reactors, Carbon Capture and Sequestration, Building/Urban/Complex Energy Systems, Water Desalination and Use of Water Resources, Energy Systems- Environmental and Sustainability Issues, System Operation/ Control/Diagnosis and Prognosis, Industrial Ecology.
Almost half of the total energy produced in the developed world is inefficiently used to heat, cool, ventilate and control humidity in buildings, to meet the increasingly high thermal comfort levels demanded by occupants. The utilisation of advanced materials and passive technologies in buildings would substantially reduce the energy demand and improve the environmental impact and carbon footprint of building stock worldwide.Materials for energy efficiency and thermal comfort in buildings critically reviews the advanced building materials applicable for improving the built environment. Part one reviews both fundamental building physics and occupant comfort in buildings, from heat and mass transport, hygrothermal behaviour, and ventilation, on to thermal comfort and health and safety requirements.Part two details the development of advanced materials and sustainable technologies for application in buildings, beginning with a review of lifecycle assessment and environmental profiling of materials. The section moves on to review thermal insulation materials, materials for heat and moisture control, and heat energy storage and passive cooling technologies. Part two concludes with coverage of modern methods of construction, roofing design and technology, and benchmarking of façades for optimised building thermal performance.Finally, Part three reviews the application of advanced materials, design and technologies in a range of existing and new building types, including domestic, commercial and high-performance buildings, and buildings in hot and tropical climates.This book is of particular use to, mechanical, electrical and HVAC engineers, architects and low-energy building practitioners worldwide, as well as to academics and researchers in the fields of building physics, civil and building engineering, and materials science. - Explores improving energy efficiency and thermal comfort through material selection and sustainable technologies - Documents the development of advanced materials and sustainable technologies for applications in building design and construction - Examines fundamental building physics and occupant comfort in buildings featuring heat and mass transport, hygrothermal behaviour and ventilation
Office building envelopes are generally successful in meeting a range of structural, aesthetic and thermal requirements. However, poor thermal envelope performance will occur when there are discontinuities in the envelope insulation and air barrier systems, such as thermal bridges and air leakage sites. These discontinuities result from designs that do not adequately account for heat, air and moisture transmission, with many thermal defects being associated with inappropriate or inadequate detailing of the connections of envelope components. Despite the existence of these thermal envelope performance problems, information is available to design and construct envelopes that do perform well. In order to close the gap between available knowledge and current practice, the Public Buildings Service of the General Services Administration has entered into an interagency agreement with the Center for Building Technology of the National Institute of Standards and Technology to develop thermal envelope design guidelines for federal office buildings. The goal of this project is to transfer the knowledge on thermal envelope design and performance from the building research, design and construction communities into a form that will be used by building design professionals. This report describes the NIST/GSA envelope design guidelines development at the end of the first year of effort on the project. The effort to this point has consisted of a literature review of research results and technical information on thermal envelope performance and design, an assessment of existing design guidelines as they relate to the thermal envelope, and the development of a format and outline for the design guidelines.
Presenting an overview of the use of Phase Change Materials (PCMs) within buildings, this book discusses the performance of PCM-enhanced building envelopes. It reviews the most common PCMs suitable for building applications, and discusses PCM encapsulation and packaging methods. In addition to this, it examines a range of PCM-enhanced building products in the process of development as well as examples of whole-building-scale field demonstrations. Further chapters discuss experimental and theoretical analyses (including available software) to determine dynamic thermal and energy performance characteristics of building enclosure components containing PCMs, and present different laboratory and field testing methods. Finally, a wide range of PCM building products are presented which are commercially available worldwide. This book is intended for students and researchers of mechanical, architectural and civil engineering and postgraduate students of energy analysis, dynamic design of building structures, and dynamic testing procedures. It also provides a useful resource for professionals involved in architectural and mechanical-civil engineering design, thermal testing and PCM manufacturing.