Download Free Thermal Evaluation Of Indoor Climate And Energy Storage In Buildings Book in PDF and EPUB Free Download. You can read online Thermal Evaluation Of Indoor Climate And Energy Storage In Buildings and write the review.

This book presents the most recent advances related to the thermal energy storage system design and integration in buildings. Additionally, modelling, application, synthetization, and characterization of energy efficient building materials is also considered.
There is a need to reduce energy consumption for space cooling and heating via energy efficient solutions/technologies for implementation in the buildings. Thermal energy storage regulates indoor temperature, shifting the peak load to the off-peak hours and reducing the energy need for space cooling and heating. This book presents the most recent advances related to the thermal energy storage system design and integration in buildings. Additionally, modelling, application, synthetization, and characterization of energy efficient building materials are also considered. Features: Provides a deep understanding of thermal energy storage technology and summarizes its utility and feasibility that can be commercially implemented worldwide Covers recent advancements related to thermal energy storage system design and integration in buildings Discusses modelling, application, synthetization, and characterization of energy-efficient building materials Details novel and emerging heat storage materials and their application to energy and environmental processes Highlights the need for future research on building comfort in cooling, heating, and ventilation through a green energy perspective This book is aimed at researchers and graduate students in mechanical, renewable energy, and HVAC engineering.
HVAC systems, load shifting, indoor climate, and energy and ventilation performance analyses are the key topics when improving energy performance in new and renovated buildings. This development has been boosted by the recently established nearly zero energy building requirements that will soon be in use in all EU Member States, as well as similar long-term zero energy building targets in Japan, the US, and other countries. The research covered in this Special Issue provides evidence of how new technical solutions have worked, in practice, in new or renovated buildings, and also discusses problems and how solutions should be further developed. Another focus is on the more detailed calculation methods needed for the correct design and sizing of dedicated systems, and for accurate quantification of energy savings. Occupant behavior and building operation is also examined, in order to avoid common performance gaps between calculated and measured performance. These topics demonstrate the challenge of high performance buildings as, in the end, comfortable buildings with good indoor climate which are easy and cheap to operate and maintain are expected by end customers. Ventilation performance, heating and cooling, sizing, energy predictions and optimization, load shifting, and field studies are some of the key topics in this Special Issue, contributing to the future of high performance buildings with reliable operation.
Cost-Effective Energy Efficient Building Retrofitting:Materials, Technologies, Optimization and Case Studies provides essential knowledge for civil engineers, architects, and other professionals working in the field of cost-effective energy efficient building retrofitting. The building sector is responsible for high energy consumption and its global demand is expected to grow as each day there are approximately 200,000 new inhabitants on planet Earth. The majority of electric energy will continue to be generated from the combustion of fossil fuels releasing not only carbon dioxide, but also methane and nitrous oxide. Energy efficiency measures are therefore crucial to reduce greenhouse gas emissions of the building sector. Energy efficient building retrofitting needs to not only be technically feasible, but also economically viable. New building materials and advanced technologies already exist, but the knowledge to integrate all active components is still scarce and far from being widespread among building industry stakeholders. Emphasizes cost-effective methods for the refurbishment of existing buildings, presenting state-of-the-art technologies Includes detailed case studies that explain various methods and Net Zero Energy Explains optimal analysis and prioritization of cost effective strategies
This book presents selected papers from the 11th International Symposium on Heating, Ventilation and Air Conditioning (ISHVAC 2019), with a focus on HVAC techniques for improving indoor environment quality and the energy efficiency of heating and cooling systems. Presenting inspiration for implementing more efficient and safer HVAC systems, the book is a valuable resource for academic researchers, engineers in industry, and government regulators.
As the century begins, natural resources are under increasing pressure, threatening public health and development. As a result, the balance between man and nature has been disrupted, with climatic changes whose effects are starting to be irreversible. Due to the relationship between the quality of the indoor built environment and its energy demand, thermal comfort issues are still relevant in the disciplinary debate. This is also because the indoor environment has a potential impact on occupants' health and productivity, affecting their physical and psychological conditions. To achieve a sustainable compromise in terms of comfort and energy requirements, several challenging questions must be answered with regard to design, technical, engineering, psychological, and physiological issues and, finally, potential interactions with other IEQ issues that require a holistic way to conceive the building envelope design. This Special Issue collected original research and review articles on innovative designs, systems, and/or control domains that can enhance thermal comfort, work productivity, and wellbeing in a built environment, along with works considering the integration of human factors in buildings’ energy performance.
Bei Neubauten wird von den meisten Industrieländern langfristig das Ziel von Netto-Nullenergiegebäuden verfolgt. Dieses Buch hilft Planern bei der optimalen Nutzung von Simulationstools für die Planung von Netto-Nullenergiegebäuden. In dem Buch werden sowohl moderne Modellierungstechniken als auch eingehende Einzelfallstudien vorgestellt. Das Buch wurde von international renommierten Experten erarbeitet und ist im Rahmen folgender Forschungsvorhaben der Internationalen Energieagentur entstanden: Solar Heating and Cooling Programme (SHC) und Energy in Buildings and Communities Programme (EBC).
This book is structured in four parts: First, it analyzes the sustainability objectives established for the building stock and the importance of thermal comfort in this aspect. Second, the existing adaptive thermal comfort models and the main energy-saving measures associated with these models are analyzed. Third, the energy savings obtained with these measures are analyzed in several case studies, comparing the results obtained with other energy conservation measures, such as the improvement of the façade. The analysis is carried out from an energy and economic perspective. Finally, a decision‐making process based on fuzzy logic is established. As an expected result, the content of the book contributes to assist architects in designing more efficient buildings from the perspective of user behavior.