Download Free Thermal And Structural Properties Of Nanoclusters And Nanoalloys Book in PDF and EPUB Free Download. You can read online Thermal And Structural Properties Of Nanoclusters And Nanoalloys and write the review.

Structure and Properties of Nanoalloys is devoted to the topic of alloy nanoparticles, the bi-or multicomponent metallic nanoparticles that are often called nanoalloys. The interest in nanoalloys stems from the wide spectrum of their possible applications in the fields of catalysis, magnetism, and optics. Nanoalloys are also interesting from a basic science point-of-view due to the complexity of their structures and properties. Nanoalloys are presently a very lively research area, with impressive developments in the last ten years. This book meets the need to systematize the wealth of experimental and computational results generated over the last decade. Provides a well-organized, coherent overall structure, with a tutorial style format ideal for teaching and self-study In-depth and fluent descriptions by a single leading academic Presents a wealth of experimental and computational results generated over the last decade
Nanoalloys: From Fundamentals to Emergent Applications presents and discusses the major topics related to nanoalloys at a time when the literature on the subject remains scarce. Particular attention is paid to experimental and theoretical aspects under the form of broad reviews covering the most recent developments. The book is organized into 11 chapters covering the most fundamental aspects of nanoalloys related to their synthesis and characterization, as well as their theoretical study. Aspects related to their thermodynamics and kinetics are covered as well. The coverage then moves to more specific topics, including optics, magnetism and catalysis, and finally to biomedical applications and the technologically relevant issue of self-assembly. With no current single reference source on the subject, the work is invaluable for researchers as the nanoscience field moves swiftly to full monetization. Encapsulates physical science of structure, properties, size, composition and ordering at nanoscale, aiding synthesis of experimentation and modelling Multi-expert and interdisciplinary perspectives on growth, synthesis and characterization of bimetallic clusters and particulates supports expansion of your current research activity into applications Synthesizes concepts and draws links between fundamental metallurgy and cutting edge nanoscience, aiding interdisciplinary research activity
Metallic nanoparticles hold promise for their potential applications in a wide array of disciplines ranging from materials science to medicine. This book brings the power of theoretical methods to an audience of experimentalists, and explicates the simulation of metallic clusters and nanoparticles. It begins with a summary of the current state of research on metallic nanoparticles, then moves on to the current state of the art in theory of metallic nanoparticldes, and then explains why and how these tools help experimentalists. Contributions are provided by renowned experts in the field from across the world.
Nanoalloys, Second Edition, provides a self-contained reference on the physics and chemistry of nanoscale alloys, dealing with all important aspects that range from the theoretical concepts and the practical synthesis methods to the characterization tools. The book also covers modern applications of nanoalloys in materials science, catalysis or nanomedicine and discusses their possible toxicity. Covers fundamentals and applicative aspects of nanoalloys in a balanced presentation, including theoretical and experimental perspectives Describes physical and chemical approaches, synthesis and characterization tools Illustrates the potential benefit of alloying on various applications ranging from materials science to energy production and nanomedicine Updates and adds topics not fully developed at the time of the 1st edition, such as toxicity and energy applications
Nanoclusters have gained a huge interest due to their unique properties. They represent an intermediate state between an atom and a solid, which manifests itself in their atomic configurations and electronic structure. The applications of nanoclusters require detailed understanding of their properties and strongly depend on the ability to control their synthesis process. Significant effort has been invested in modelling of nanoclusters properties. However, the complexity of these systems is such that many aspects of their growth process and properties are yet to be understood. My thesis focuses on describing structural and electronic properties of nanoclusters. In particular, the model for nanoparticles growth in plasma condition is developed and applied, allowing to describe the influence of the plasma conditions on the evaporation, growth and morphological transformation processes. The mechanism driving the morphology transition from icosahedral to decahedral phase is suggested based on force-fields models. Spectroscopic methods allow for precise characterization of nanoclusters and constitute an important tool for analysis of their electronic structure of valence band as well as core-states. The special attention in the thesis is paid to the core-states of nanoclusters and influences that affect them. In particular, the effects of local coordination, interatomic distances and confinement effects are investigated in metal nanoclusters by density functional theory methods. These effects and their contribution to spectroscopic features of nanoclusters in X-ray photoemission are modelled. The relation between the reactivity of nanoclusters and their spectroscopic features calculated in different approximations are revealed and explained. Ceria is a very important system for many applications due to the ability of cerium atoms to change their oxidation state depending on the environment. The shift of the oxidation state and its effects on the core-states is examined with X-ray absorption measurements and modelling allowing to build a rigid foundation for interpretation of the measured spectra and characterization of electronic structure of ceria nanoparticles.
Atomic clusters are aggregates of atoms containing a few to several thousand atoms. Due to the small size of these pieces of matter, the properties of atomic clusters in general are different from those of the corresponding material in the macroscopic bulk phase. This monograph presents the main developments of atomic clusters and the current status of the field. The book treats different types of clusters with very different properties: clusters in which the atoms or molecules are tied by weak van der Waals interactions, metallic clusters, clusters of ionic materials, and network clusters made of typical covalent elements. It includes methods of experimental cluster synthesis as well as the structural, electronic, thermodynamic and magnetic properties of clusters, covering both experiments and the theoretical work that has led to our present understanding of the different properties of clusters. The question of assembling nanoclusters to form solids with new properties is also considered. Having an adequate knowledge of the properties of clusters can be of great help to any scientist working with objects of nanometric size. On the other hand, nanoclusters are themselves potentially important in fields like catalysis and nanomedicine.
Atomic clusters are aggregates of atoms containing a few to several thousand atoms. Due to the small size of these pieces of matter, the properties of atomic clusters in general are different from those of the corresponding material in the macroscopic bulk phase. This monograph presents the main developments of atomic clusters and the current status of the field. The book treats different types of clusters with very different properties: clusters in which the atoms or molecules are tied by weak van der Waals interactions, metallic clusters, clusters of ionic materials, and network clusters made of typical covalent elements. It includes methods of experimental cluster synthesis as well as the structural, electronic, thermodynamic and magnetic properties of clusters, covering both experiments and the theoretical work that has led to our present understanding of the different properties of clusters. The question of assembling nanoclusters to form solids with new properties is also considered.Having an adequate knowledge of the properties of clusters can be of great help to any scientist working with objects of nanometric size. On the other hand, nanoclusters are themselves potentially important in fields like catalysis and nanomedicine./a