Download Free Therapeutic Applications Of Adenoviruses Book in PDF and EPUB Free Download. You can read online Therapeutic Applications Of Adenoviruses and write the review.

Adenoviruses are double stranded DNA viruses that have been used to study the process of DNA replication. Studies of the mode of action of adenovirally produced tumors in rodents led to the discovery of tumour supressor genes. The adenoviral vector is now the most used vector in clinical gene therapy especially for some kinds of cancers. The chapters in this book focus on the most up-to-date developments in the therapeutic applications of adenoviruses. The intended audience is individuals in the Life Sciences interested in therapeutic applications of adenoviruses. This book reviews the life history and immune responses to adenoviruses and summarizes various therapies implemented with the use of adenoviruses.
Adenoviral Vectors for Gene Therapy, Second Edition provides detailed, comprehensive coverage of the gene delivery vehicles that are based on the adenovirus that is emerging as an important tool in gene therapy. These exciting new therapeutic agents have great potential for the treatment of disease, making gene therapy a fast-growing field for research. This book presents topics ranging from the basic biology of adenoviruses, through the construction and purification of adenoviral vectors, cutting-edge vectorology, and the use of adenoviral vectors in preclinical animal models, with final consideration of the regulatory issues surrounding human clinical gene therapy trials. This broad scope of information provides a solid overview of the field, allowing the reader to gain a complete understanding of the development and use of adenoviral vectors. - Provides complete coverage of the basic biology of adenoviruses, as well as their construction, propagation, and purification of adenoviral vectors - Introduces common strategies for the development of adenoviral vectors, along with cutting-edge methods for their improvement - Demonstrates noninvasive imaging of adenovirus-mediated gene transfer - Discusses utility of adenoviral vectors in animal disease models - Considers Federal Drug Administration regulations for human clinical trials
1. Non-viral gene therapy / Sean M. Sullivan -- 2. Adenoviral vectors / Stuart A. Nicklin and Andrew H. Baker -- 3. Retroviral vectors and integration analysis / Cynthia C. Bartholomae [und weitere] -- 4. Lentiviral vectors / Janka Matrai, Marinee K.L. Chuah and Thierry VandenDriessche -- 5. Herpes simplex virus vectors / William F. Goins [und weitere] -- 6. Adeno-Associated Viral (AAV) vectors / Nicholas Muzyczka -- 7. Regulatory RNA in gene therapy / Alfred. S. Lewin -- 8. DNA integrating vectors (Transposon, Integrase) / Lauren E. Woodard and Michele P. Calos -- 9. Homologous recombination and targeted gene modification for gene therapy / Matthew Porteus -- 10. Gene switches for pre-clinical studies in gene therapy / Caroline Le Guiner [und weitere] -- 11. Gene therapy for central nervous system disorders / Deborah Young and Patricia A. Lawlor -- 12. Gene therapy of hemoglobinopathies / Angela E. Rivers and Arun Srivastava -- 13. Gene therapy for primary immunodeficiencies / Aisha Sauer, Barbara Cassani and Alessandro Aiuti -- 14. Gene therapy for hemophilia / David Markusic, Babak Moghimi and Roland Herzog -- 15. Gene therapy for obesity and diabetes / Sergei Zolotukhin and Clive H. Wasserfall -- 16. Gene therapy for Duchenne muscular dystrophy / Takashi Okada and Shin'ichi Takeda -- 17. Cancer gene therapy / Kirsten A.K. Weigel-Van Aken -- 18. Gene therapy for autoimmune disorders / Daniel F. Gaddy, Melanie A. Ruffner and Paul D. Robbins -- 19. Gene therapy for inherited metabolic storage diseases / Cathryn Mah -- 20. Retinal diseases / Shannon E. Boye, Sanford L. Boye and William W. Hauswirth -- 21. A brief guide to gene therapy treatments for pulmonary diseases / Ashley T. Martino, Christian Mueller and Terence R. Flotte -- 22. Cardiovascular disease / Darin J. Falk, Cathryn S. Mah and Barry J. Byrne
During the past decades, with the introduction of the recombinant DNA, hybridoma and transgenic technologies there has been an exponential evolution in understanding the pathogenesis, diagnosis and treatment of a large number of human diseases. The technologies are evident with the development of cytokines and monoclonal antibodies as therapeutic agents and the techniques used in gene therapy. Immunopharmacology is that area of biomedical sciences where immunology, pharmacology and pathology overlap. It concerns the pharmacological approach to the immune response in physiological as well as pathological events. This goals and objectives of this textbook are to emphasize the developments in immunology and pharmacology as they relate to the modulation of immune response. The information includes the pharmacology of cytokines, monoclonal antibodies, mechanism of action of immune-suppressive agents and their relevance in tissue transplantation, therapeutic strategies for the treatment of AIDS and the techniques employed in gene therapy. The book is intended for health care professional students and graduate students in pharmacology and immunology.
Genetic manipulation of the adult mammalian nervous system is one of the most exciting areas in contemporary neurobiology. The explosive growth of this field has been facilitated by harnessing the power of viruses to transfer genetic material into mammalian cells.Viral Vectors: Gene Therapy and Neuroscience Applications represents the first comprehensive review of viral vector applications to the nervous system by leaders in virology, molecular neurobiology, neuroanatomy, and developmental neurobiology. It serves both as a source of fundamental information for those newly interested in viral vectors and as a compilation of state-of-the-art technologies and applications for more experienced researchers.This work provides expert background information on viral systems, and the broad range of applications will help readers appreciate the current and future impact of viral vectors in both clinical and basic neuroscience.
The field of pharmaceutical biotechnology is evolving rapidly. A whole new arsenal of protein pharmaceuticals is being produced by recombinant techniques for cancer, viral infections, cardiovascular and hereditary disorders, and other diseases. In addition, scientists are confronted with new technologies such as polymerase chain reactions, combinatorial chemistry and gene therapy. This introductory textbook provides extensive coverage of both the basic science and the applications of biotechnology-produced pharmaceuticals, with special emphasis on their clinical use. Pharmaceutical Biotechnology serves as a complete one-stop source for undergraduate pharmacists, and it is valuable for researchers and professionals in the pharmaceutical industry as well.
This comprehensive encyclopedic reference provides rapid access to focused information on topics of cancer research for clinicians, research scientists and advanced students. Given the overwhelming success of the first edition, which appeared in 2001, and fast development in the different fields of cancer research, it has been decided to publish a second fully revised and expanded edition. With an A-Z format of over 7,000 entries, more than 1,000 contributing authors provide a complete reference to cancer. The merging of different basic and clinical scientific disciplines towards the common goal of fighting cancer makes such a comprehensive reference source all the more timely.
Human gene therapy holds great promise for the cure of many genetic diseases. In order to achieve such a cure there are two requirements. First, the affected gene must be cloned, its se quence determined and its regulation adequately characterized. Second, a suitable vector for the delivery of a good copy of the affected gene must be available. For a vector to be of use several attributes are highly desirable: these include ability to carry the intact gene (although this may be either the genomic or the cDNA form) in a stable form, ability to introduce the gene into the desired cell type, ability to express the introduced gene in an appropriately regulated manner for an extended period of time, and a lack of toxicity for the recipient. Also of concern is the frequency of cell transformation and, in some cases, the ability to introduce the gene into nondividing stem cells. Sev eral animal viruses have been tested as potential vectors, but none has proven to have all the desired properties described above. For example, retroviruses are difficult to propagate in sufficient titers, do not integrate into nondividing cells, and are of concern because of their oncogenic properties in some hosts and because they integrate at many sites in the genome and, thus, are potentially insertional mutagens. Additionally, genes introduced by retroviral vectors are frequently expressed for relatively short periods of time. A second virus used as a vector in model systems has been adenovirus (Ad).
In this book, leading international experts analyze state-of-the-art advances in gene transfer vectors for applications in inherited disorders and also examine the toxicity profiles of these methods. The authors discuss the strengths and weaknesses of available vectors in the clinical setting, and specifically focus on the challenges and possible solutions that researchers are testing in order to improve the safety of gene therapy for genetic diseases. This comprehensive and authoritative overview of vector development is a necessary text for researchers, toxicologists, pharmacologists, molecular biologists, physicians, and students in these fields.
Discusses how to fight Ebola, SARS Corona, and other known or emerging human viruses by building on the successes in antiviral therapy of the past decades Written by leading medicinal chemists from academia and industry, this book discusses the entire field of antiviral drug discovery and development from a medicinal chemistry perspective, focusing on antiviral drugs, targets, and viral disease mechanisms. It provides an outlook on emerging pathogens such as Ebola, Zika, West Nile, Lassa, and includes a chapter on SARS Coronoavirus-2 causing the present pandemic. New Drug Development for Known and Emerging Viruses describes the discovery and development process for antiviral agents for different classes of viruses and targets based on the experiences from the nine human viruses for which approved drugs are on the market (HIV, HCV, Influenza, RSV, HBV, HPV, HCMV, HSV, and VZV). It covers the properties and potential of 20 classes of currently approved antivirals, including combination drugs, and looks at novel antiviral strategies against emerging viruses. Covers the entire field of antiviral drug discovery and development Addresses the need for antiviral drugs to combat major health threats such as Ebola, Zika, West Nile, and SARS Coronavirus-2 Summarizes the successes of the past 15 years in developing ground-breaking medicines against 9 major human viruses, both from the medicinal chemistry and the pharmacological angle Discusses practical and strategic challenges in the drug discovery and development process, including screening technologies, latency, and toxicity issues New Developments in Antiviral Drugs is an important book for medicinal chemists, pharmaceutical chemists, virologists, and epidemiologists, and will be of great interest to those in the ;pharmaceutical industry and public health agencies.