Download Free Theory Of Weak Interactions Book in PDF and EPUB Free Download. You can read online Theory Of Weak Interactions and write the review.

Gauge Theory of Weak Interactions treats the unification of electromagnetic and weak interactions and considers related phenomena. First, the Fermi theory of beta decay is presented, followed by a discussion of parity violation, clarifying the importance of symmetries. Then the concept of a spontaneously broken gauge theory is introduced, and all necessary mathematical tools are carefully developed. The "standard model" of unified electroweak interactions is thoroughly discussed including current developments. The final chapter contains an introduction to unified theories of strong and electroweak interactions. Numerous solved examples and problems make this volume uniquely suited as a text for an advanced course. Thisfourth edition has been carefully revised.
In Experiment, Right or Wrong, Allan Franklin continues his investigation of the history and philosophy of experiment presented in his previous book, The Neglect of Experiment. In this new study, Franklin considers the fallibility and corrigibility of experimental results and presents detailed histories of two such episodes: 1) the experiment and the development of the theory of weak interactions from Fermi's theory in 1934 to the V-A theory of 1957 and 2) atomic parity violation experiments and the Weinberg-Salam unified theory of electroweak interactions of the 1970s and 1980s. In these episodes Franklin demonstrates not only that experimental results can be wrong, but also that theoretical calculations and the comparison between experiment and theory can also be incorrect. In the second episode, Franklin contrasts his view of an "evidence model" of science in which questions of theory choice, confirmation, and refutation are decided on the basis of reliable experimental evidence, with that proposed by the social constructivists.
A thoroughly revised edition of a landmark textbook on gauge theories and their applications to particle physics This completely revised and updated graduate-level textbook is an ideal introduction to gauge theories and their applications to high-energy particle physics, and takes an in-depth look at two new laws of nature—quantum chromodynamics and the electroweak theory. From quantum electrodynamics through unified theories of the interactions among leptons and quarks, Chris Quigg examines the logic and structure behind gauge theories and the experimental underpinnings of today's theories. Quigg emphasizes how we know what we know, and in the era of the Large Hadron Collider, his insightful survey of the standard model and the next great questions for particle physics makes for compelling reading. The brand-new edition shows how the electroweak theory developed in conversation with experiment. Featuring a wide-ranging treatment of electroweak symmetry breaking, the physics of the Higgs boson, and the importance of the 1-TeV scale, the book moves beyond established knowledge and investigates the path toward unified theories of strong, weak, and electromagnetic interactions. Explicit calculations and diverse exercises allow readers to derive the consequences of these theories. Extensive annotated bibliographies accompany each chapter, amplify points of conceptual or technical interest, introduce further applications, and lead readers to the research literature. Students and seasoned practitioners will profit from the text's current insights, and specialists wishing to understand gauge theories will find the book an ideal reference for self-study. Brand-new edition of a landmark text introducing gauge theories Consistent attention to how we know what we know Explicit calculations develop concepts and engage with experiment Interesting and diverse problems sharpen skills and ideas Extensive annotated bibliographies
A high-level, rigorous, and technical treatment of modern particle physics, this book was written by a well-known professor at Harvard University. In addition to its value as a text for advanced undergraduate and graduate students of physics, it also serves as a reference for professionals. 1984 edition.
This is the first advanced, systematic and comprehensive look at weak decays in the framework of gauge theories. Included is a large spectrum of topics, both theoretical and experimental. In addition to explicit advanced calculations of Feynman diagrams and the study of renormalization group strong interaction effects in weak decays, the book is devoted to the Standard Model Effective Theory, dominating present phenomenology in this field, and to new physics models with the goal of searching for new particles and interactions through quantum fluctuations. This book will benefit theorists, experimental researchers, and Ph.D. students working on flavour physics and weak decays as well as physicists interested in physics beyond the Standard Model. In its concern for the search for new phenomena at short distance scales through the interplay between theory and experiment, this book constitutes a travel guide to physics far beyond the scales explored by the Large Hadron Collider at CERN.
In recent years, the study of weak interaction and its relationship with the other fundamnetal interactions of nature has progressed rapidly. Weak interactions of leptons and quarks provides an up-to-date account of this continuing research. The Introduction discusses early models and historical developments in the understanding of the weak force. The authors then give a clear presentation of the modern theoretical basis of weak interactions, going on to discuss recent advances in the field. These include development of the eletroweak gauge theory, and the discovery of neutral currents and of a host of new particles. There is also a chapter devoted entirely to neutrino astrophysics. Its straightforward style and its emphasis on experimental results will make this book an excellent source for students (problem sets are included at the end of each chapter) and experimentalists in the field. Physicists whose speciality lies outside the study of elementary particle physics will also find it useful.
This textbook gives a comprehensive summary of the gauge theories of the fundamental interactions. The authors stress the intimate connection between the basic experimental facts and the formulation of gauge theories of the strong and electroweak interaction. The concepts and technical tools of quantum field theory are presented. They are used to derive precision results of quantum chromodynamics and the standard model of the electroweak interaction of experiments in elementary particle physics. The book includes the latest experimental results and presents the actual status of the theory.
A comprehensive introduction to neutrino physics with detailed description of neutrinos and their properties.
This is a selection from over 250 papers published by Abdus Salam. Professor Salam has been Professor of Theoretical Physics at Imperial College, London and Director of the International Centre for Theoretical Physics in Trieste, for which he was largely responsible for creating. He is one of the most distinguished theoretical physicists of his generation and won the Nobel Prize for Physics in 1979 for his work on the unification of electromagnetic and weak interactions. He is well known for his deep interest in the development of scientific research in the third world (to which ICTP is devoted) and has taken a leading part in setting up the Third World Academy. His research work has ranged widely over quantum field theory and all aspects of the theory of elementary particles and more recently into other fields, including high-temperature superconductivity and theoretical biology. The papers selected represent a cross section of his work covering the entire period of 50 years from his student days to the present.