Download Free Theory Of Van Der Waals Attraction Book in PDF and EPUB Free Download. You can read online Theory Of Van Der Waals Attraction and write the review.

This book should prove to be the definitive work explaining van der Waals forces, how to calculate them and take account of their impact under any circumstances and conditions. These weak intermolecular forces are of truly pervasive impact, and biologists, chemists, physicists and engineers will profit greatly from the thorough grounding in these fundamental forces that this book offers. Parsegian has organized his book at three successive levels of mathematical sophistication, to satisfy the needs and interests of readers at all levels of preparation. The Prelude and Level 1 are intended to give everyone an overview in words and pictures of the modern theory of van der Waals forces. Level 2 gives the formulae and a wide range of algorithms to let readers compute the van der Waals forces under virtually any physical or physiological conditions. Level 3 offers a rigorous basic formulation of the theory.
This book is an outcome of the International Workshop on Electronic Density Functional Theory, held at Griffith University in Brisbane, Australia, in July 1996. Density functional theory, standing as it does at the boundary between the disciplines of physics, chemistry, and materials science, is a great mixer. Invited experts from North America, Europe, and Australia mingled with students from several disciplines, rapidly taking up the informal style for which Australia is famous. A list of participants is given at the end of the book. Density functional theory (DFT) is a subtle approach to the very difficult problem of predicting the behavior of many interacting particles. A major application is the study of many-electron systems. This was the workshop theme, embracing inter alia computational chemistry and condensed matter physics. DFT circumvents the more conceptually straightforward (but more computationally intensive) approach in which one solves the many-body Schrodinger equation. It relies instead on rather delicate considerations involving the electron number density. For many years the pioneering work of Kohn and Sham (the Local Density Ap proximation of 1965 and immediate extensions) represented the state of the art in DFT. This approach was widely used for its appealing simplicity and computability, but gave rather modest accuracy. In the last few years there has been a renaissance of interest, quite largely due to the remarkable success of the new generation of gradient functionals whose initiators include invitees to the workshop (Perdew, Parr, Yang).
A general introduction to surface and interfacial forces, perfectly combining theoretical concepts, experimental techniques and practical applications. In this completely updated edition all the chapters have been thoroughly revised and extended to cover new developments and approaches with around 15% new content. A large part of the book is devoted to surface forces between solid surfaces in liquid media, and while a basic knowledge of colloid and interface science is helpful, it is not essential since all important concepts are explained and the theoretical concepts can be understood with an intermediate knowledge of mathematics. A number of exercises with solutions and the end-of-chapter summaries of the most important equations, facts and phenomena serve as additional tools to strengthen the acquired knowledge and allow for self-study. The result is a readily accessible text that helps to foster an understanding of the intricacies of this highly relevant topic.
This book is a comprehensive exposition of the thermodynamic properties of the van der Waals fluid, which includes a review of past work together with a presentation of the author's own recent extensive studies. The book provides readers with a graphical o
Intermolecular and Surface Forces describes the role of various intermolecular and interparticle forces in determining the properties of simple systems such as gases, liquids and solids, with a special focus on more complex colloidal, polymeric and biological systems. The book provides a thorough foundation in theories and concepts of intermolecular forces, allowing researchers and students to recognize which forces are important in any particular system, as well as how to control these forces. This third edition is expanded into three sections and contains five new chapters over the previous edition. - Starts from the basics and builds up to more complex systems - Covers all aspects of intermolecular and interparticle forces both at the fundamental and applied levels - Multidisciplinary approach: bringing together and unifying phenomena from different fields - This new edition has an expanded Part III and new chapters on non-equilibrium (dynamic) interactions, and tribology (friction forces)
The types of forces that are involved in the interactions between molecules vary across a wide spectrum from very strong, as in ion-ion interactions, to the much weaker forces that are involved in van der Waals complexes. This book provides an introduction to the theoretical methods that are used to analyze each sort of force and provide the reader with a guide to the most appropriate method for a given problem. Examples are used to illustrate the points, and the pitfalls that a novice might encounter are outlined. These examples range from very small complexes to much larger systems with biological relevance.
Evgenii Mikhailovich Lifshitz is perhaps best known for his long association with his mentor Lev D Landau, with whom he co-wrote the classic Course of Theoretical Physics, but he was a noted and respected Soviet physicist in his own right. Born in the Ukraine to a scientific family, his long and distinguished career will be remembered for three things - his collaboration with Landau on the internationally acclaimed Course of Theoretical Physics, his work as editor of the Journal of Experimental and Theoretical Physics, and his scientific papers. As well as his work with Landau, E\M\Lifshitz collaborated with many noted Soviet scientists such as I\M\Khalatnikov, I\E\Dyzaloshinskii, V\V\Sudakov, V\A\Belinskii and the editor of this book, L\P\Pitaevskii. Many of the papers presented in this book include their contribution. Collected together they give a comprehensive and penetrating insight into the man and his work, clearly showing Lifshitz's contribution to physics and the influences on his work.
Co-authored by an experimentalist (Klaus M3ller-Dethlefs ) and theoretician (Pavel Hobza), the aim of this book is to provide a general introduction into the science behind non-covalent interactions and molecular complexes using some important experimental and theoretical methods and approaches.
In its simplest manifestation, the Casimir effect is a quantum force of attraction between two parallel uncharged conducting plates. More generally, it refers to the interaction OCo which may be either attractive or repulsive OCo between material bodies due to quantum fluctuations in whatever fields are relevant. It is a local version of the van der Waals force between molecules. Its sweep ranges from perhaps its being the origin of the cosmological constant to its being responsible for the confinement of quarks. This monograph develops the theory of such forces, based primarily on physically transparent Green''s function techniques, and makes applications from quarks to the cosmos, as well as observable consequences in condensed matter systems. It is aimed at graduate students and researchers in theoretical physics, quantum field theory, and applied mathematics. Contents: Introduction to the Casimir Effect; Casimir Force Between Parallel Plates; Casimir Force Between Parallel Dielectrics; Casimir Effect with Perfect Spherical; The Casimir Effect of a Dielectric Ball: The Equivalence of the Casimir Effect and van der Waals Forces; Application to Hadronic Physics: Zero-Point Energy in the Bag Model; Casimir Effect in Cylindrical Geometries; Casimir Effect in Two Dimensions: The Maxwell-Chern-Simons Casimir Effect; Casimir Effect on a D -dimensional Sphere; Cosmological Implications of the Casimir Effect; Local Effects; Sonoluminescene and the Dynamical Casimir Effect; Radiative Corrections to the Casimir Effect; Conclusions and Outlook; Appendices: Relation of Contour Integral Method to Green''s Function Approach; Casimir Effect for a Closed String. Readership: High-energy, condensed-matter and nuclear physicists."