Download Free Theory Of Spinors And Its Application In Physics And Mechanics Book in PDF and EPUB Free Download. You can read online Theory Of Spinors And Its Application In Physics And Mechanics and write the review.

This book contains a systematic exposition of the theory of spinors in finite-dimensional Euclidean and Riemannian spaces. The applications of spinors in field theory and relativistic mechanics of continuous media are considered. The main mathematical part is connected with the study of invariant algebraic and geometric relations between spinors and tensors. The theory of spinors and the methods of the tensor representation of spinors and spinor equations are thoroughly expounded in four-dimensional and three-dimensional spaces. Very useful and important relations are derived that express the derivatives of the spinor fields in terms of the derivatives of various tensor fields. The problems associated with an invariant description of spinors as objects that do not depend on the choice of a coordinate system are addressed in detail. As an application, the author considers an invariant tensor formulation of certain classes of differential spinor equations containing, in particular, the most important spinor equations of field theory and quantum mechanics. Exact solutions of the Einstein–Dirac equations, nonlinear Heisenberg’s spinor equations, and equations for relativistic spin fluids are given. The book presents a large body of factual material and is suited for use as a handbook. It is intended for specialists in theoretical physics, as well as for students and post-graduate students of physical and mathematical specialties.
From Spinors to Quantum Mechanics discusses group theory and its use in quantum mechanics. Chapters 1 to 4 offer an introduction to group theory, and it provides the reader with an exact and clear intuition of what a spinor is, showing that spinors are just a mathematically complete notation for group elements. Chapter 5 contains the first rigorous derivation of the Dirac equation from a simple set of assumptions. The remaining chapters will interest the advanced reader who is interested in the meaning of quantum mechanics. They propose a novel approach to the foundations of quantum mechanics, based on the idea that the meaning of the formalism is already provided by the mathematics.In the traditional approach to quantum mechanics as initiated by Heisenberg, one has to start from a number of experimental results and then derive a set of rules and calculations that reproduce the observed experimental results. In such an inductive approach the underlying assumptions are not given at the outset. The reader has to figure them out, and this has proven to be difficult. The book shows that a different, bottom-up approach to quantum mechanics is possible, which merits further investigation as it demonstrates that with the methods used, the reader can obtain the correct results in a context where one would hitherto not expect this to be possible.
Describes orthgonal and related Lie groups, using real or complex parameters and indefinite metrics. Develops theory of spinors by giving a purely geometric definition of these mathematical entities.
This book contains a systematic exposition of the theory of spinors in finite-dimensional Euclidean and Riemannian spaces. The applications of spinors in field theory and relativistic mechanics of continuous media are considered. The main mathematical part is connected with the study of invariant algebraic and geometric relations between spinors and tensors. The theory of spinors and the methods of the tensor representation of spinors and spinor equations are thoroughly expounded in four-dimensional and three-dimensional spaces. Very useful and important relations are derived that express the derivatives of the spinor fields in terms of the derivatives of various tensor fields. The problems associated with an invariant description of spinors as objects that do not depend on the choice of a coordinate system are addressed in detail. As an application, the author considers an invariant tensor formulation of certain classes of differential spinor equations containing, in particular, the most important spinor equations of field theory and quantum mechanics. Exact solutions of the Einstein-Dirac equations, nonlinear Heisenbergs spinor equations, and equations for relativistic spin fluids are given. The book presents a large body of factual material and is suited for use as a handbook. It is intended for specialists in theoretical physics, as well as for students and post-graduate students of physical and mathematical specialties.
Supersymmetry is an extension of the successful Standard Model of particle physics; it relies on the principle that fermions and bosons are related by a symmetry, leading to an elegant predictive structure for quantum field theory. This textbook provides a comprehensive and pedagogical introduction to supersymmetry and spinor techniques in quantum field theory. By utilising the two-component spinor formalism for fermions, the authors provide many examples of practical calculations relevant for collider physics signatures, anomalies, and radiative corrections. They present in detail the component field and superspace formulations of supersymmetry and explore related concepts, including the theory of extended Higgs sectors, models of grand unification, and the origin of neutrino masses. Numerous exercises are provided at the end of each chapter. Aimed at graduate students and researchers, this volume provides a clear and unified treatment of theoretical concepts that are at the frontiers of high energy particle physics.
At what point does theory depart the realm of testable hypothesis and come to resemble something like aesthetic speculation, or even theology? The legendary physicist Wolfgang Pauli had a phrase for such ideas: He would describe them as "not even wrong," meaning that they were so incomplete that they could not even be used to make predictions to compare with observations to see whether they were wrong or not. In Peter Woit's view, superstring theory is just such an idea. In Not Even Wrong , he shows that what many physicists call superstring "theory" is not a theory at all. It makes no predictions, even wrong ones, and this very lack of falsifiability is what has allowed the subject to survive and flourish. Not Even Wrong explains why the mathematical conditions for progress in physics are entirely absent from superstring theory today and shows that judgments about scientific statements, which should be based on the logical consistency of argument and experimental evidence, are instead based on the eminence of those claiming to know the truth. In the face of many books from enthusiasts for string theory, this book presents the other side of the story.
This book is devoted to investigating the spinor structures in particle physics and in polarization optics. In fact, it consists of two parts joined by the question: Which are the manifestations of spinor structures in different branches of physics. It is based on original research. The main idea is the statement that the physical understanding of geometry should be based on physical field theories. The book contains numerous topics with the accent on field theory, quantum mechanics and polarization optics of the light, and on the spinor approach.
Classic undergraduate text explores wave functions for the hydrogen atom, perturbation theory, the Pauli exclusion principle, and the structure of simple and complex molecules. Numerous tables and figures.