Download Free Theory Of Resistive Magnetohydrodynamic Instabilities Excited By Energetic Trapped Particles In Large Size Tokamaks Book in PDF and EPUB Free Download. You can read online Theory Of Resistive Magnetohydrodynamic Instabilities Excited By Energetic Trapped Particles In Large Size Tokamaks and write the review.

It is shown that, in present-day large-size tokamaks, finite resistivity modifies qualitatively the stability properties of magnetohydrodynamic instabilities resonantly excited by the unfavorable processional drift of energetic-trapped particles, i.e., the so-called ''fishbone''-type instabilities. Specifically, it is found that (1) the n = 1 energetic-trapped particle-induced internal kink (''fishbone'') instability is strongly stabilized by resistive dissipation and (2) finite resistivity lowers considerably the threshold conditions for resonant excitations of high-n ballooning/interchange modes. The possibility of exciting fishbones by alpha particles in ignition experiments is also considered.
Semiannual, with semiannual and annual indexes. References to all scientific and technical literature coming from DOE, its laboratories, energy centers, and contractors. Includes all works deriving from DOE, other related government-sponsored information, and foreign nonnuclear information. Arranged under 39 categories, e.g., Biomedical sciences, basic studies; Biomedical sciences, applied studies; Health and safety; and Fusion energy. Entry gives bibliographical information and abstract. Corporate, author, subject, report number indexes.
Analytical theories for the excitations in tokamaks of magnetohydrodynamic (MHD) modes with large toroidal mode numbers (n”1) are presented. Specifically, only instability mechanisms due to resonances with energetic ions/alpha particles are considered. It is noted that, while trapped energetic particles contribute to the ideal region, circulating energetic particles contribute mainly to the singular layer dynamics. A unified dispersion relation manifesting both fishbone-like modes and beam transit-resonance modes is then driven. Finally, we also analyze the stability property of toroidicity-induced shear Alfven waves excited via transit resonances with alpha particles in ignited tokamaks. 11 refs.
We have analyzed theoretically the resonant excitations of kinetic ballooning modes (KBM) by the energetic ions/alpha particles in tokamaks. Our theory includes finite-size orbit effects of both circulating and trapped particles. With energetic-particle contributions suppressed in the singular inertial layer, an analytic.dispersion relation can then be derived via an asymptotic matching analysis. The dispersion relation, in particular, demonstrates the existence of two types of modes; that is, the magnetohydrodynamic (MHD) gap mode and the energetic-particle continuum mode. Specific expressions for real frequencies, growth rates and threshold conditions are also derived for a model slowing-down beam ion distribution function.