Download Free Theory Of Nonlinear Age Dependent Population Dynamics Book in PDF and EPUB Free Download. You can read online Theory Of Nonlinear Age Dependent Population Dynamics and write the review.

This volume is devoted to some of the most biologically significant control problems governed by continuous age-dependent population dynamics. It investigates the existence, uniqueness, positivity, and asymptotic behaviour of the solutions of the continuous age-structured models. Some comparison results are also established. In the optimal control problems the emphasis is on first order necessary conditions of optimality. These conditions allow the determination of the optimal control or the approximation of the optimal control problem. The exact controllability for some models with diffusion and internal control is also studied. These subjects are treated using new concepts and techniques of modern optimal control theory, such as Clarke's generalized gradient, Ekeland's variational principle, Hamilton-Jacobi equations, and Carleman estimates. A background in advanced calculus and partial differential equations is required. Audience: This work will be of interest to students in mathematics, biology, and engineering, and researchers in applied mathematics, control theory, and biology.
This book provides an introduction to age-structured population modeling which emphasizes the connection between mathematical theory and underlying biological assumptions. Through the rigorous development of the linear theory and the nonlinear theory alongside numerics, the authors explore classical equations that describe the dynamics of certain ecological systems. Modeling aspects are discussed to show how relevant problems in the fields of demography, ecology and epidemiology can be formulated and treated within the theory. In particular, the book presents extensions of age-structured modeling to the spread of diseases and epidemics while also addressing the issue of regularity of solutions, the asymptotic behavior of solutions, and numerical approximation. With sections on transmission models, non-autonomous models and global dynamics, this book fills a gap in the literature on theoretical population dynamics. The Basic Approach to Age-Structured Population Dynamics will appeal to graduate students and researchers in mathematical biology, epidemiology and demography who are interested in the systematic presentation of relevant models and mathematical methods.
This volume contains the contributions of participants of the conference "Optimal Control of Partial Differential Equations" which, under the chairmanship of the editors, took place at the Mathematisches Forschungsinstitut Oberwolfach from May 18 to May 24, 1986. The great variety of topics covered by the contributions strongly indicates that also in the future it will be impossible to develop a unifying control theory of partial differential equations. On the other hand, there is a strong tendency to treat prob lems which are directly connected to practical applications. So this volume contains real-world applications like optimal cooling laws for the production of rolled steel or concrete solutions for the problem of optimal shape design in mechanics and hydrody namics. Another main topic is the construction of numerical methods. This includes applications of the finite element method as well as of Quasi-Newton-methods to con strained and unconstrained control problems. Also, very complex problems arising in the theory of free boundary value problems are treated. ]~inally, some contribu tions show how practical problems stimulate the further development of the theory; in particular, this is the case for fields like suboptimal control, necessary optimality conditions and sensitivity analysis. As usual, the lectures and stimulating discussions took place in the pleasant at mosphere of the Mathematisches Forschungsinstitut Oberwolfach. Special thanks of the participants are returned to the Director as well as to the staff of the institute.
This volume Future Control and Automation- Volume 2 includes best papers from 2012 2nd International Conference on Future Control and Automation (ICFCA 2012) held on July 1-2, 2012, Changsha, China. Future control and automation is the use of control systems and information technologies to reduce the need for human work in the production of goods and services. This volume can be divided into six sessions on the basis of the classification of manuscripts considered, which is listed as follows: Mathematical Modeling, Analysis and Computation, Control Engineering, Reliable Networks Design, Vehicular Communications and Networking, Automation and Mechatronics.
This book is the first one in which basic demographic models are rigorously formulated by using modern age-structured population dynamics, extended to study real-world population problems. Age structure is a crucial factor in understanding population phenomena, and the essential ideas in demography and epidemiology cannot be understood without mathematical formulation; therefore, this book gives readers a robust mathematical introduction to human population studies. In the first part of the volume, classical demographic models such as the stable population model and its linear extensions, density-dependent nonlinear models, and pair-formation models are formulated by the McKendrick partial differential equation and are analyzed from a dynamical system point of view. In the second part, mathematical models for infectious diseases spreading at the population level are examined by using nonlinear differential equations and a renewal equation. Since an epidemic can be seen as a nonlinear renewal process of an infected population, this book will provide a natural unification point of view for demography and epidemiology. The well-known epidemic threshold principle is formulated by the basic reproduction number, which is also a most important key index in demography. The author develops a universal theory of the basic reproduction number in heterogeneous environments. By introducing the host age structure, epidemic models are developed into more realistic demographic formulations, which are essentially needed to attack urgent epidemiological control problems in the real world.
Gunter Lumer was an outstanding mathematician whose works have great influence on the research community in mathematical analysis and evolution equations. He was at the origin of the breath-taking development the theory of semigroups saw after the pioneering book of Hille and Phillips from 1957. This volume contains invited contributions presenting the state of the art of these topics and reflecting the broad interests of Gunter Lumer.
This book gathers nineteen papers presented at the first NLAGA-BIRS Symposium, which was held at the Cheikh Anta Diop University in Dakar, Senegal, on June 24–28, 2019. The four-day symposium brought together African experts on nonlinear analysis and geometry and their applications, as well as their international partners, to present and discuss mathematical results in various areas. The main goal of the NLAGA project is to advance and consolidate the development of these mathematical fields in West and Central Africa with a focus on solving real-world problems such as coastal erosion, pollution, and urban network and population dynamics problems. The book addresses a range of topics related to partial differential equations, geometrical analysis of optimal shapes, geometric structures, optimization and optimal transportation, control theory, and mathematical modeling.
The study of populations is becoming increasingly focused on dynamics. We believe there are two reasons for this trend. The ftrst is the impactof nonlinear dynamics with its exciting ideas and colorful language: bifurcations, domains of attraction, chaos, fractals, strange attractors. Complexity, which is so very much a part of biology, now seems to be also a part of mathematics. A second trend is the accessibility of the new concepts. Thebarriers tocommunicationbetween theoristandexperimentalistseemless impenetrable. The active participationofthe experimentalist means that the theory will obtain substance. Our role is the application of the theory of dynamics to the analysis ofbiological populations. We began our work early in 1979 by writing an ordinary differential equation for the rateofchange in adult numbers which was based on an equilibrium model proposed adecadeearlier. Duringthenextfewmonths weftlledournotebookswithstraightforward deductions from the model and its associated biological implications. Slowly, some of the biological observations were explained and papers followed on a variety of topics: genetic and demographic stability, stationary probability distributions for population size,population growth asabirth-deathprocess, natural selectionanddensity-dependent population growth, genetic disequilibrium, and the stationary stochastic dynamics of adult numbers.