Download Free Theory Of Effective Propositional Paraconsistent Logics Book in PDF and EPUB Free Download. You can read online Theory Of Effective Propositional Paraconsistent Logics and write the review.

Perhaps the most counterintuitive property of classical logic (as well as of its most famous rival, intuitionistic logic) is the fact that it allows the inference of any proposition from a single pair of contradicting statements. A lot of work and efforts have been devoted over the years to develop alternatives to classical logic that do not have this drawback. Those alternatives are nowadays called `paraconsistent systems', and the corresponding research area --- paraconsistent reasoning. The purpose of this book is to provide a comprehensive methodological presentation of the rich mathematical theory that exists by now concerning the most fundamental part of paraconsistent reasoning: propositional (monotonic) logics. Among those logics it mainly concentrates on those which are effective (in the sense that they are decidable, have a concrete semantics, and can be equipped with implementable analytic proof systems). The first part of the book defines in precise terms all the basic notions that are related to paraconsistency, after reviewing all the necessary preliminaries. The other parts describe in detail all of the main approaches to the subject. This includes finite-valued semantics (both truth functional and non-deterministic); logics of formal inconsistency; relevant logics; constructive paraconsistent logics which are based on positive intuitionistic logic; and paraconsistent logics which are based on modal logics. The book covers thousands of paraconsistent logics, each of which is studied both from a semantical and from a proof theoretical points of view. In addition, most of those logics are characterized in terms of minimality or maximality properties that they may have.
This book is the first in the field of paraconsistency to offer a comprehensive overview of the subject, including connections to other logics and applications in information processing, linguistics, reasoning and argumentation, and philosophy of science. It is recommended reading for anyone interested in the question of reasoning and argumentation in the presence of contradictions, in semantics, in the paradoxes of set theory and in the puzzling properties of negation in logic programming. Paraconsistent logic comprises a major logical theory and offers the broadest possible perspective on the debate of negation in logic and philosophy. It is a powerful tool for reasoning under contradictoriness as it investigates logic systems in which contradictory information does not lead to arbitrary conclusions. Reasoning under contradictions constitutes one of most important and creative achievements in contemporary logic, with deep roots in philosophical questions involving negation and consistency This book offers an invaluable introduction to a topic of central importance in logic and philosophy. It discusses (i) the history of paraconsistent logic; (ii) language, negation, contradiction, consistency and inconsistency; (iii) logics of formal inconsistency (LFIs) and the main paraconsistent propositional systems; (iv) many-valued companions, possible-translations semantics and non-deterministic semantics; (v) paraconsistent modal logics; (vi) first-order paraconsistent logics; (vii) applications to information processing, databases and quantum computation; and (viii) applications to deontic paradoxes, connections to Eastern thought and to dialogical reasoning.
This book is a collection of contributions honouring Arnon Avron’s seminal work on the semantics and proof theory of non-classical logics. It includes presentations of advanced work by some of the most esteemed scholars working on semantic and proof-theoretical aspects of computer science logic. Topics in this book include frameworks for paraconsistent reasoning, foundations of relevance logics, analysis and characterizations of modal logics and fuzzy logics, hypersequent calculi and their properties, non-deterministic semantics, algebraic structures for many-valued logics, and representations of the mechanization of mathematics. Avron’s foundational and pioneering contributions have been widely acknowledged and adopted by the scientific community. His research interests are very broad, spanning over proof theory, automated reasoning, non-classical logics, foundations of mathematics, and applications of logic in computer science and artificial intelligence. This is clearly reflected by the diversity of topics discussed in the chapters included in this book, all of which directly relate to Avron’s past and present works. This book is of interest to computer scientists and scholars of formal logic.
Propositional Logics presents the history, philosophy, and mathematics of the major systems of propositional logic. Classical logic, modal logics, many-valued logics, intuitionism, paraconsistent logics, and dependent implication are examined in separate chapters. Each begins with a motivation in the originators' own terms, followed by the standard formal semantics, syntax, and completeness theorem. The chapters on the various logics are largely self-contained so that the book can be used as a reference. An appendix summarizes the formal semantics and axiomatizations of the logics. The view that unifies the exposition is that propositional logics comprise a spectrum. As the aspect of propositions under consideration varies, the logic varies. Each logic is shown to fall naturally within a general framework for semantics. A theory of translations between logics is presented that allows for further comparisons, and necessary conditions are given for a translation to preserve meaning. For this third edition the material has been re-organized to make the text easier to study, and a new section on paraconsistent logics with simple semantics has been added which challenges standard views on the nature of consequence relations. The text includes worked examples and hundreds of exercises, from routine to open problems, making the book with its clear and careful exposition ideal for courses or individual study.
The book provides a contemporary view on different aspects of the deductive systems in various types of logics including term logics, propositional logics, logics of refutation, non-Fregean logics, higher order logics and arithmetic.
A logic is called 'paraconsistent' if it rejects the rule called 'ex contradictione quodlibet', according to which any conclusion follows from inconsistent premises. While logicians have proposed many technically developed paraconsistent logical systems and contemporary philosophers like Graham Priest have advanced the view that some contradictions can be true, and advocated a paraconsistent logic to deal with them, until recent times these systems have been little understood by philosophers. This book presents a comprehensive overview on paraconsistent logical systems to change this situation. The book includes almost every major author currently working in the field. The papers are on the cutting edge of the literature some of which discuss current debates and others present important new ideas. The editors have avoided papers about technical details of paraconsistent logic, but instead concentrated upon works that discuss more "big picture" ideas. Different treatments of paradoxes takes centre stage in many of the papers, but also there are several papers on how to interpret paraconistent logic and some on how it can be applied to philosophy of mathematics, the philosophy of language, and metaphysics.
This book presents a study on the foundations of a large class of paraconsistent logics from the point of view of the logics of formal inconsistency. It also presents several systems of non-standard logics with paraconsistent features.
Here is an account of recent investigations into the two main concepts of negation developed in the constructive logic: the negation as reduction to absurdity, and the strong negation. These concepts are studied in the setting of paraconsistent logic.
This book is dedicated to the work of Alasdair Urquhart. The book starts out with an introduction to and an overview of Urquhart’s work, and an autobiographical essay by Urquhart. This introductory section is followed by papers on algebraic logic and lattice theory, papers on the complexity of proofs, and papers on philosophical logic and history of logic. The final section of the book contains a response to the papers by Urquhart. Alasdair Urquhart has made extremely important contributions to a variety of fields in logic. He produced some of the earliest work on the semantics of relevant logic. He provided the undecidability of the logics R (of relevant implication) and E (of relevant entailment), as well as some of their close neighbors. He proved that interpolation fails in some of those systems. Urquhart has done very important work in complexity theory, both about the complexity of proofs in classical and some nonclassical logics. In pure algebra, he has produced a representation theorem for lattices and some rather beautiful duality theorems. In addition, he has done important work in the history of logic, especially on Bertrand Russell, including editing Volume four of Russell’s Collected Papers.
This book covers work written by leading scholars from different schools within the research area of paraconsistency. The authors critically investigate how contemporary paraconsistent logics can be used to better understand human reasoning in science and mathematics. Offering a variety of perspectives, they shed a new light on the question of whether paraconsistent logics can function as the underlying logics of inconsistent but useful scientific and mathematical theories. The great variety of paraconsistent logics gives rise to various, interrelated questions, such as what are the desiderata a paraconsistent logic should satisfy, is there prospect of a universal approach to paraconsistent reasoning with axiomatic theories, and to what extent is reasoning about sets structurally analogous to reasoning about truth. Furthermore, the authors consider paraconsistent logic’s status as either a normative or descriptive discipline (or one which falls in between) and which inconsistent but non-trivial axiomatic theories are well understood by which types of paraconsistent approaches. This volume addresses such questions from different perspectives in order to (i) obtain a representative overview of the state of the art in the philosophical debate on paraconsistency, (ii) come up with fresh ideas for the future of paraconsistency, and most importantly (iii) provide paraconsistent logic with a stronger philosophical foundation, taking into account the developments within the different schools of paraconsistency.