Download Free Theory Of Defects And Dopants In Amorphous And Crystalline Semiconductors Book in PDF and EPUB Free Download. You can read online Theory Of Defects And Dopants In Amorphous And Crystalline Semiconductors and write the review.

Dopants and Defects in Semiconductors covers the theory, experimentation, and identification of impurities, dopants, and intrinsic defects in semiconductors. The book fills a crucial gap between solid-state physics and more specialized course texts. The authors first present introductory concepts, including basic semiconductor theory, defect classifications, crystal growth, and doping. They then explain electrical, vibrational, optical, and thermal properties. Moving on to characterization approaches, the text concludes with chapters on the measurement of electrical properties, optical spectroscopy, particle-beam methods, and microscopy. By treating dopants and defects in semiconductors as a unified subject, this book helps define the field and prepares students for work in technologically important areas. It provides students with a solid foundation in both experimental methods and the theory of defects in semiconductors.
This book covers electronic and structural properties of light-induced defects, light-induced defect creation processes, and related phenomena in crystalline, amorphous, and microcrystalline semiconductors. It provides a theoretical treatment of recombination-enhanced defect reaction in crystalline semiconductors, particularly GaAs and related materials. It also discusses experimental evidence for this phenomenon. Light-induced defect creation in hydrogenated amorphous silicon (a-Si:H) is described in more detail, including its mechanism and experimental results. The subjects treated by the book are important issues from the viewpoints of physics and applications.
Semiconductor science and technology is the art of defect engineering. The theoretical modeling of defects has improved dramatically over the past decade. These tools are now applied to a wide range of materials issues: quantum dots, buckyballs, spintronics, interfaces, amorphous systems, and many others. This volume presents a coherent and detailed description of the field, and brings together leaders in theoretical research. Today's state-of-the-art, as well as tomorrow’s tools, are discussed: the supercell-pseudopotential method, the GW formalism,Quantum Monte Carlo, learn-on-the-fly molecular dynamics, finite-temperature treatments, etc. A wealth of applications are included, from point defects to wafer bonding or the propagation of dislocation.
Praise for the First Edition "The book goes beyond the usual textbook in that it provides more specific examples of real-world defect physics ... an easy reading, broad introductory overview of the field" ?Materials Today "... well written, with clear, lucid explanations ..." ?Chemistry World This revised edition provides the most complete, up-to-date coverage of the fundamental knowledge of semiconductors, including a new chapter that expands on the latest technology and applications of semiconductors. In addition to inclusion of additional chapter problems and worked examples, it provides more detail on solid-state lighting (LEDs and laser diodes). The authors have achieved a unified overview of dopants and defects, offering a solid foundation for experimental methods and the theory of defects in semiconductors. Matthew D. McCluskey is a professor in the Department of Physics and Astronomy and Materials Science Program at Washington State University (WSU), Pullman, Washington. He received a Physics Ph.D. from the University of California (UC), Berkeley. Eugene E. Haller is a professor emeritus at the University of California, Berkeley, and a member of the National Academy of Engineering. He received a Ph.D. in Solid State and Applied Physics from the University of Basel, Switzerland.
Dopants and Defects in Semiconductors covers the theory, experimentation, and identification of impurities, dopants, and intrinsic defects in semiconductors. The book fills a crucial gap between solid-state physics and more specialized course texts.The authors first present introductory concepts, including basic semiconductor theory, defect classif
This is a useful textbook for graduate students in the fields of solid state physics and chemistry as well as electronic engineering. Presenting the fundamentals of amorphous semiconductors clearly, it will be essential reading for young scientists intending to develop new preparation techniques for more ideal amorphous semiconductors e.g. a-Si: H, to fabricate stable and efficient solar cells and thin film transistors and new artificial amorphous materials such as multilayers for quantum devices.A large portion is devoted to the latest developments of amorphous semiconductors including electronic properties of a-Si: H, nature of weak bonds and gap states in a-Si: H, mechanisms for light-induced defect creation in a-Si: H and chalcogenides, quantum phenomena in multilayer fi
A thorough review of the properties of deep-level, localized defects in semiconductors.
This volume, number 91 in the Semiconductor and Semimetals series, focuses on defects in semiconductors. Defects in semiconductors help to explain several phenomena, from diffusion to getter, and to draw theories on materials' behavior in response to electrical or mechanical fields. The volume includes chapters focusing specifically on electron and proton irradiation of silicon, point defects in zinc oxide and gallium nitride, ion implantation defects and shallow junctions in silicon and germanium, and much more. It will help support students and scientists in their experimental and theoretical paths. Expert contributors Reviews of the most important recent literature Clear illustrations A broad view, including examination of defects in different semiconductors