Download Free Theory And Practice Of Uncertain Programming Book in PDF and EPUB Free Download. You can read online Theory And Practice Of Uncertain Programming and write the review.

This book provides comprehensive coverage of uncertain programming theory, including numerous modeling ideas, hybrid intelligent algorithms, and applications in system reliability design, vehicle routing problem, and machine scheduling problem.
Real-life decisions are usually made in the state of uncertainty such as randomness and fuzziness. How do we model optimization problems in uncertain environments? How do we solve these models? In order to answer these questions, this book provides a self-contained, comprehensive and up-to-date presentation of uncertain programming theory, including numerous modeling ideas, hybrid intelligent algorithms, and applications in system reliability design, project scheduling problem, vehicle routing problem, facility location problem, and machine scheduling problem. Researchers, practitioners and students in operations research, management science, information science, system science, and engineering will find this work a stimulating and useful reference.
Real-life decisions are usually made in the state of uncertainty (randomness, fuzziness, roughness, etc.). How do we model optimization problems in uncertain environments? How do we solve these models? In order to answer these questions, this book provides a self-contained, comprehensive and up-to-date presentation of uncertain programming theory. It includes numerous modeling ideas, hybrid intelligent algorithms, and various applications in transportation problem, inventory system, facility location & allocation, capital budgeting, topological optimization, vehicle routing problem, redundancy optimization, and scheduling. Researchers, practitioners and students in operations research, management science, information science, system science, and engineering will find this work a stimulating and useful reference.
Optimization problems involving stochastic models occur in almost all areas of science and engineering, such as telecommunications, medicine, and finance. Their existence compels a need for rigorous ways of formulating, analyzing, and solving such problems. This book focuses on optimization problems involving uncertain parameters and covers the theoretical foundations and recent advances in areas where stochastic models are available. Readers will find coverage of the basic concepts of modeling these problems, including recourse actions and the nonanticipativity principle. The book also includes the theory of two-stage and multistage stochastic programming problems; the current state of the theory on chance (probabilistic) constraints, including the structure of the problems, optimality theory, and duality; and statistical inference in and risk-averse approaches to stochastic programming.
This book provides a self-contained, comprehensive and up-to-date presentation of uncertainty theory. The purpose is to equip the readers with an axiomatic approach to deal with uncertainty. For this new edition the entire text has been totally rewritten. The chapters on chance theory and uncertainty theory are completely new. Mathematicians, researchers, engineers, designers, and students will find this work a stimulating and useful reference.
An up-to-date, authoritative, comprehensive look at optimization theory in uncertain environments Real-life management decisions, such as buy/sell decisions in the stock market, are almost always made in uncertain environments. Is it possible to make model decision problems to fit these circumstances? Once constructed, can these models be solved? In Uncertain Programming, Baoding Liu answers both of these questions in the affirmative and goes on to lay a solid foundation for optimization in generally uncertain environments. Uncertain Programming describes the basic concepts of mathematical programming, provides a genetic algorithm for optimization problems, and introduces the techniques of stochastic and fuzzy simulation. After examining some basic results of expected value models, the book moves on to explore chance-constrained programming with stochastic parameters and illustrate applications of chance-constrained programming models. Dr. Liu discusses dependent-chance programming in stochastic environments and extends both chance-constrained and dependent-chance programming from stochastic to fuzzy environments. He then constructs a theoretical framework for fuzzy programming with fuzzy rather than crisp decisions. This remarkable and revolutionary book: * Lays a foundation for optimization theory in uncertain environments * Provides a unifying principle for dealing with stochastic and fuzzy programming * Incorporates the most recent developments in the field * Emphasizes modeling ideas, evolutionary computation, and applications of uncertain programming Uncertain Programming is a reliable, authoritative, and eye-opening guide for researchers and engineers in operations research, management science, business management, information and systems science, and computer science.
Robust optimization is still a relatively new approach to optimization problems affected by uncertainty, but it has already proved so useful in real applications that it is difficult to tackle such problems today without considering this powerful methodology. Written by the principal developers of robust optimization, and describing the main achievements of a decade of research, this is the first book to provide a comprehensive and up-to-date account of the subject. Robust optimization is designed to meet some major challenges associated with uncertainty-affected optimization problems: to operate under lack of full information on the nature of uncertainty; to model the problem in a form that can be solved efficiently; and to provide guarantees about the performance of the solution. The book starts with a relatively simple treatment of uncertain linear programming, proceeding with a deep analysis of the interconnections between the construction of appropriate uncertainty sets and the classical chance constraints (probabilistic) approach. It then develops the robust optimization theory for uncertain conic quadratic and semidefinite optimization problems and dynamic (multistage) problems. The theory is supported by numerous examples and computational illustrations. An essential book for anyone working on optimization and decision making under uncertainty, Robust Optimization also makes an ideal graduate textbook on the subject.
Welcome to the proceedings of the Sixth International Conference on Management Science and Engineering Management (ICMSEM2012) held from November 11 to 14, 2012 at Quaid-i-Azam University, Islamabad, Pakistan and supported by Sichuan University (Chengdu, China), Quaid-i-Azam University (Islamabad, Pakistan) and The National Natural Science Foundation of China. The International Conference on Management Science and Engineering Management is the annual conference organized by the International Society of Management Science and Engineering Management. The goals of the Conference are to foster international research collaborations in Management Science and Engineering Management as well as to provide a forum to present current research results. The papers are classified into 8 sections: Computer and Networks, Information Technology, Decision Support System, Industrial Engineering, Supply Chain Management, Project Management, Manufacturing and Ecological Engineering. The key issues of the sixth ICMSEM cover various areas in MSEM, such as Decision Support System, Computational Mathematics, Information Systems, Logistics and Supply Chain Management, Relationship Management, Scheduling and Control, Data Warehousing and Data Mining, Electronic Commerce, Neural Networks, Stochastic models and Simulation, Heuristics Algorithms, Risk Control, and Carbon Credits.
When no samples are available to estimate a probability distribution, we have to invite some domain experts to evaluate the belief degree that each event will happen. Perhaps some people think that the belief degree should be modeled by subjective probability or fuzzy set theory. However, it is usually inappropriate because both of them may lead to counterintuitive results in this case. In order to rationally deal with belief degrees, uncertainty theory was founded in 2007 and subsequently studied by many researchers. Nowadays, uncertainty theory has become a branch of axiomatic mathematics for modeling belief degrees. This is an introductory textbook on uncertainty theory, uncertain programming, uncertain statistics, uncertain risk analysis, uncertain reliability analysis, uncertain set, uncertain logic, uncertain inference, uncertain process, uncertain calculus, and uncertain differential equation. This textbook also shows applications of uncertainty theory to scheduling, logistics, networks, data mining, control, and finance.
Praise for the Second Edition: "This is quite a well-done book: very tightly organized, better-than-average exposition, and numerous examples, illustrations, and applications." —Mathematical Reviews of the American Mathematical Society An Introduction to Linear Programming and Game Theory, Third Edition presents a rigorous, yet accessible, introduction to the theoretical concepts and computational techniques of linear programming and game theory. Now with more extensive modeling exercises and detailed integer programming examples, this book uniquely illustrates how mathematics can be used in real-world applications in the social, life, and managerial sciences, providing readers with the opportunity to develop and apply their analytical abilities when solving realistic problems. This Third Edition addresses various new topics and improvements in the field of mathematical programming, and it also presents two software programs, LP Assistant and the Solver add-in for Microsoft Office Excel, for solving linear programming problems. LP Assistant, developed by coauthor Gerard Keough, allows readers to perform the basic steps of the algorithms provided in the book and is freely available via the book's related Web site. The use of the sensitivity analysis report and integer programming algorithm from the Solver add-in for Microsoft Office Excel is introduced so readers can solve the book's linear and integer programming problems. A detailed appendix contains instructions for the use of both applications. Additional features of the Third Edition include: A discussion of sensitivity analysis for the two-variable problem, along with new examples demonstrating integer programming, non-linear programming, and make vs. buy models Revised proofs and a discussion on the relevance and solution of the dual problem A section on developing an example in Data Envelopment Analysis An outline of the proof of John Nash's theorem on the existence of equilibrium strategy pairs for non-cooperative, non-zero-sum games Providing a complete mathematical development of all presented concepts and examples, Introduction to Linear Programming and Game Theory, Third Edition is an ideal text for linear programming and mathematical modeling courses at the upper-undergraduate and graduate levels. It also serves as a valuable reference for professionals who use game theory in business, economics, and management science.