Download Free Theory And Practice Of Uncertain Programming Book in PDF and EPUB Free Download. You can read online Theory And Practice Of Uncertain Programming and write the review.

Real-life decisions are usually made in the state of uncertainty (randomness, fuzziness, roughness, etc.). How do we model optimization problems in uncertain environments? How do we solve these models? In order to answer these questions, this book provides a self-contained, comprehensive and up-to-date presentation of uncertain programming theory. It includes numerous modeling ideas, hybrid intelligent algorithms, and various applications in transportation problem, inventory system, facility location & allocation, capital budgeting, topological optimization, vehicle routing problem, redundancy optimization, and scheduling. Researchers, practitioners and students in operations research, management science, information science, system science, and engineering will find this work a stimulating and useful reference.
This book provides comprehensive coverage of uncertain programming theory, including numerous modeling ideas, hybrid intelligent algorithms, and applications in system reliability design, vehicle routing problem, and machine scheduling problem.
An up-to-date, authoritative, comprehensive look at optimization theory in uncertain environments Real-life management decisions, such as buy/sell decisions in the stock market, are almost always made in uncertain environments. Is it possible to make model decision problems to fit these circumstances? Once constructed, can these models be solved? In Uncertain Programming, Baoding Liu answers both of these questions in the affirmative and goes on to lay a solid foundation for optimization in generally uncertain environments. Uncertain Programming describes the basic concepts of mathematical programming, provides a genetic algorithm for optimization problems, and introduces the techniques of stochastic and fuzzy simulation. After examining some basic results of expected value models, the book moves on to explore chance-constrained programming with stochastic parameters and illustrate applications of chance-constrained programming models. Dr. Liu discusses dependent-chance programming in stochastic environments and extends both chance-constrained and dependent-chance programming from stochastic to fuzzy environments. He then constructs a theoretical framework for fuzzy programming with fuzzy rather than crisp decisions. This remarkable and revolutionary book: * Lays a foundation for optimization theory in uncertain environments * Provides a unifying principle for dealing with stochastic and fuzzy programming * Incorporates the most recent developments in the field * Emphasizes modeling ideas, evolutionary computation, and applications of uncertain programming Uncertain Programming is a reliable, authoritative, and eye-opening guide for researchers and engineers in operations research, management science, business management, information and systems science, and computer science.
Uncertainty theory is a branch of mathematics based on normality, monotonicity, self-duality, countable subadditivity, and product measure axioms. Uncertainty is any concept that satisfies the axioms of uncertainty theory. Thus uncertainty is neither randomness nor fuzziness. It is also known from some surveys that a lot of phenomena do behave like uncertainty. How do we model uncertainty? How do we use uncertainty theory? In order to answer these questions, this book provides a self-contained, comprehensive and up-to-date presentation of uncertainty theory, including uncertain programming, uncertain risk analysis, uncertain reliability analysis, uncertain process, uncertain calculus, uncertain differential equation, uncertain logic, uncertain entailment, and uncertain inference. Mathematicians, researchers, engineers, designers, and students in the field of mathematics, information science, operations research, system science, industrial engineering, computer science, artificial intelligence, finance, control, and management science will find this work a stimulating and useful reference.
Optimization problems involving stochastic models occur in almost all areas of science and engineering, such as telecommunications, medicine, and finance. Their existence compels a need for rigorous ways of formulating, analyzing, and solving such problems. This book focuses on optimization problems involving uncertain parameters and covers the theoretical foundations and recent advances in areas where stochastic models are available. Readers will find coverage of the basic concepts of modeling these problems, including recourse actions and the nonanticipativity principle. The book also includes the theory of two-stage and multistage stochastic programming problems; the current state of the theory on chance (probabilistic) constraints, including the structure of the problems, optimality theory, and duality; and statistical inference in and risk-averse approaches to stochastic programming.
This book provides a self-contained, comprehensive and up-to-date presentation of uncertainty theory. The purpose is to equip the readers with an axiomatic approach to deal with uncertainty. For this new edition the entire text has been totally rewritten. The chapters on chance theory and uncertainty theory are completely new. Mathematicians, researchers, engineers, designers, and students will find this work a stimulating and useful reference.
Robust optimization is still a relatively new approach to optimization problems affected by uncertainty, but it has already proved so useful in real applications that it is difficult to tackle such problems today without considering this powerful methodology. Written by the principal developers of robust optimization, and describing the main achievements of a decade of research, this is the first book to provide a comprehensive and up-to-date account of the subject. Robust optimization is designed to meet some major challenges associated with uncertainty-affected optimization problems: to operate under lack of full information on the nature of uncertainty; to model the problem in a form that can be solved efficiently; and to provide guarantees about the performance of the solution. The book starts with a relatively simple treatment of uncertain linear programming, proceeding with a deep analysis of the interconnections between the construction of appropriate uncertainty sets and the classical chance constraints (probabilistic) approach. It then develops the robust optimization theory for uncertain conic quadratic and semidefinite optimization problems and dynamic (multistage) problems. The theory is supported by numerous examples and computational illustrations. An essential book for anyone working on optimization and decision making under uncertainty, Robust Optimization also makes an ideal graduate textbook on the subject.
Optimization problems involving stochastic models occur in almost all areas of science and engineering, such as telecommunications, medicine, and finance. Their existence compels a need for rigorous ways of formulating, analyzing, and solving such problems. This book focuses on optimization problems involving uncertain parameters and covers the theoretical foundations and recent advances in areas where stochastic models are available. In Lectures on Stochastic Programming: Modeling and Theory, Second Edition, the authors introduce new material to reflect recent developments in stochastic programming, including: an analytical description of the tangent and normal cones of chance constrained sets; analysis of optimality conditions applied to nonconvex problems; a discussion of the stochastic dual dynamic programming method; an extended discussion of law invariant coherent risk measures and their Kusuoka representations; and in-depth analysis of dynamic risk measures and concepts of time consistency, including several new results.
Widely considered one of the best practical guides to programming, Steve McConnell’s original CODE COMPLETE has been helping developers write better software for more than a decade. Now this classic book has been fully updated and revised with leading-edge practices—and hundreds of new code samples—illustrating the art and science of software construction. Capturing the body of knowledge available from research, academia, and everyday commercial practice, McConnell synthesizes the most effective techniques and must-know principles into clear, pragmatic guidance. No matter what your experience level, development environment, or project size, this book will inform and stimulate your thinking—and help you build the highest quality code. Discover the timeless techniques and strategies that help you: Design for minimum complexity and maximum creativity Reap the benefits of collaborative development Apply defensive programming techniques to reduce and flush out errors Exploit opportunities to refactor—or evolve—code, and do it safely Use construction practices that are right-weight for your project Debug problems quickly and effectively Resolve critical construction issues early and correctly Build quality into the beginning, middle, and end of your project
How should firms decide whether and when to invest in new capital equipment, additions to their workforce, or the development of new products? Why have traditional economic models of investment failed to explain the behavior of investment spending in the United States and other countries? In this book, Avinash Dixit and Robert Pindyck provide the first detailed exposition of a new theoretical approach to the capital investment decisions of firms, stressing the irreversibility of most investment decisions, and the ongoing uncertainty of the economic environment in which these decisions are made. In so doing, they answer important questions about investment decisions and the behavior of investment spending. This new approach to investment recognizes the option value of waiting for better (but never complete) information. It exploits an analogy with the theory of options in financial markets, which permits a much richer dynamic framework than was possible with the traditional theory of investment. The authors present the new theory in a clear and systematic way, and consolidate, synthesize, and extend the various strands of research that have come out of the theory. Their book shows the importance of the theory for understanding investment behavior of firms; develops the implications of this theory for industry dynamics and for government policy concerning investment; and shows how the theory can be applied to specific industries and to a wide variety of business problems.