Download Free Theoretical Studies Of The Energies And Geometries Of Strained Hydrocarbons Book in PDF and EPUB Free Download. You can read online Theoretical Studies Of The Energies And Geometries Of Strained Hydrocarbons and write the review.

In clearly structured chapters, this book covers the fascinating world of hydrocarbons, providing an insight into the fundamental principles of chemistry. The monograph covers modern aspects of the topic, such as carbon nanotubes, molecular flask inclusion, and fullerenes, with new synthetic procedures for the build up of the structural lattice included.
The energy of a molecule can be studied with the help of quantum theory, a satisfactory approach because it involves only basic and clearly identified physical concepts. In an entirely different approach, the molecular energy can be broken down into individual contributions reflecting chemical bonds plus a host of subsidiary "effects", like y-gauche, skew pentane, ring-strain, etc. , giving an overall picture in terms of topological characteristics. The latter approach can be successful, particularly if a sufficient number of particular topological situations have been parametrized (which is an empir ical way of "understanding" chemistry), but also contains the seed for difficulties. Indeed, the danger exists of unduly ascribing a physical meaning to corrective terms whose function is primarily to account in an empirical fashion for discrepancies between "expected" and observed results. The link between this type of empirical approach and the knowledge that the ground state energy is uniquely determined by the electron density is lost somewhere along the road, although some of the "steric effects" are here and there vaguely traced back to electronic effects. The approach presented in this monograph goes back to the fundamen tals in that it is exclusively based on interactions involving nuclear and electronic charges. Confining the study to molecules in their equilibrium geometry, the problem of molecular energies is reduced to its electrostatic aspects, explicitly involving local electron populations.
A novel proposal for teaching organic chemistry based on a broader and simplified use of quantum chemistry theories and notions of some statistical thermodynamic concepts aiming to enrich the learning process of the organic molecular properties and organic reactions. A detailed physical chemistry approach to teach organic chemistry for undergraduate students is the main aim of this book. A secondary objective is to familiarize undergraduate students with computational chemistry since most of illustrations of optimized geometries (plus some topological graphs) and information is from quantum chemistry outputs which will also enable students to obtain a deeper understanding of organic chemistry.
This is the final report of the theoretical studies of elementary hydrocarbon species and their reactions. Part A has a bibliography of publications supported by DOE from 2010 to 2016 and Part B goes into recent research highlights.
Mathematical Modelling of Gas-Phase Complex Reaction Systems: Pyrolysis and Combustion, Volume 45, gives an overview of the different steps involved in the development and application of detailed kinetic mechanisms, mainly relating to pyrolysis and combustion processes. The book is divided into two parts that cover the chemistry and kinetic models and then the numerical and statistical methods. It offers a comprehensive coverage of the theory and tools needed, along with the steps necessary for practical and industrial applications. Details thermochemical properties and "ab initio" calculations of elementary reaction rates Details kinetic mechanisms of pyrolysis and combustion processes Explains experimental data for improving reaction models and for kinetic mechanisms assessment Describes surrogate fuels and molecular reconstruction of hydrocarbon liquid mixtures Describes pollutant formation in combustion systems Solves and validates the kinetic mechanisms using numerical and statistical methods Outlines optimal design of industrial burners and optimization and dynamic control of pyrolysis furnaces Outlines large eddy simulation of turbulent reacting flows
Computational chemistry has become extremely important in the last decade, being widely used in academic and industrial research. Yet there have been few books designed to teach the subject to nonspecialists. Computational Chemistry: Introduction to the Theory and Applications of Molecular and Quantum Mechanics is an invaluable tool for teaching and researchers alike. The book provides an overview of the field, explains the basic underlying theory at a meaningful level that is not beyond beginners, and it gives numerous comparisons of different methods with one another and with experiment. The following concepts are illustrated and their possibilities and limitations are given: - potential energy surfaces; - simple and extended Hückel methods; - ab initio, AM1 and related semiempirical methods; - density functional theory (DFT). Topics are placed in a historical context, adding interest to them and removing much of their apparently arbitrary aspect. The large number of references, to all significant topics mentioned, should make this book useful not only to undergraduates but also to graduate students and academic and industrial researchers.