Download Free Theoretical Physics For Biological Systems Book in PDF and EPUB Free Download. You can read online Theoretical Physics For Biological Systems and write the review.

Quantum physics provides the concepts and their mathematical formalization that lend themselves to describe important properties of biological networks topology, such as vulnerability to external stress and their dynamic response to changing physiological conditions. A theory of networks enhanced with mathematical concepts and tools of quantum physics opens a new area of biological physics, the one of systems biological physics.
This book aims to cover a broad range of topics in statistical physics, including statistical mechanics (equilibrium and non-equilibrium), soft matter and fluid physics, for applications to biological phenomena at both cellular and macromolecular levels. It is intended to be a graduate level textbook, but can also be addressed to the interested senior level undergraduate. The book is written also for those involved in research on biological systems or soft matter based on physics, particularly on statistical physics. Typical statistical physics courses cover ideal gases (classical and quantum) and interacting units of simple structures. In contrast, even simple biological fluids are solutions of macromolecules, the structures of which are very complex. The goal of this book to fill this wide gap by providing appropriate content as well as by explaining the theoretical method that typifies good modeling, namely, the method of coarse-grained descriptions that extract the most salient features emerging at mesoscopic scales. The major topics covered in this book include thermodynamics, equilibrium statistical mechanics, soft matter physics of polymers and membranes, non-equilibrium statistical physics covering stochastic processes, transport phenomena and hydrodynamics. Generic methods and theories are described with detailed derivations, followed by applications and examples in biology. The book aims to help the readers build, systematically and coherently through basic principles, their own understanding of nonspecific concepts and theoretical methods, which they may be able to apply to a broader class of biological problems.
This is a graduate-level introduction to quantitative concepts and methods in the science of living systems. It relies on a systems approach for understanding the physical principles operating in biology. Physical phenomena are treated at the appropriate spatio-temporal scale and phenomenological equations are used in order to reflect the system of interest. Biological details enter to the degree necessary for understanding specific processes, but in many cases the approach is not reductionist. This is in line with the approach taken by physics to many other complex systems. The book bridges the gap between graduate students’ general physics courses and research papers published in professional journals. It gives students the foundations needed for independent research in biological physics and for working in collaborations aimed at quantitative biology and biomedical research. Also included are modern mathematical and theoretical physics methods, giving the student a broad knowledge of tools that can shed light on the sophisticated mechanisms brought forth by evolution in biological systems. The content covers many aspects that have been the focus of active research over the past twenty years, reflecting the authors' experience as leading researchers and teachers in this field.
This book discusses the basic foundations of theoretical biology. Contrary to the objects of theoretical physics, the biological object contains a kind of ontological duality and refers to a fundamental wholeness of a living system. The rational interpretation of wholeness is considered by the author as a true basis for fundamental principles of development of theoretical biology and for understanding its link to physics, to psychology, and to semiotics. The rational holistic approach in application to theoretical biology can be substantiated through the clarification of internal logic of organization and description of biological systems. This logic will provide an understanding of the place of life in the Universe. The main goal of this book is to introduce the view that in the potentially infinite system of human knowledge, a proper clarification of the place of Man in the Universe is possible only via understanding of the phenomenon of life.
This book presents an extensive treatment of the introduction of modern physical concepts into biology. In particular, the concept of coherence finds wide applications and yields novel results in context with multiple problems as they arise in biology: these include long range resonant cellular effects and resonant interactions of biological tissues with low intensity electro-magnetic radiation. Extensive experimental support of the theoretical concept is presented.
In this book, physics in its many aspects (thermodynamics, mechanics, electricity, fluid dynamics) is the guiding light on a fascinating journey through biological systems, providing ideas, examples and stimulating reflections for undergraduate physics, chemistry and life-science students, as well as for anyone interested in the frontiers between physics and biology. Rather than introducing a lot of new information, it encourages young students to use their recently acquired knowledge to start seeing the physics behind the biology. As an undergraduate textbook in introductory biophysics, it includes the necessary background and tools, including exercises and appendices, to form a progressive course. In this case, the chapters can be used in the order proposed, possibly split between two semesters. The book is also an absorbing read for researchers in the life sciences who wish to refresh or go deeper into the physics concepts gleaned in their early years of scientific training. Less physics-oriented readers might want to skip the first chapter, as well as all the "gray boxes" containing the more formal developments, and create their own á-la-carte menu of chapters.
Biophysics is a new way of looking at living matter. It uses quantitative experimental and theoretical methods to open a new window for studying and understanding life processes. This textbook gives compact introductions to the basics of the field, including molecular cell biology and statistical physics. It then presents in-depth discussions of more advanced biophysics subjects, progressing to state-of-the-art experiments and their theoretical interpretations. The book is unique by offering a general introduction to biophysics, yet at the same time restricting itself to processes that occur inside the cell nucleus and that involve biopolymers (DNA, RNA, and proteins). This allows for an accessible read for beginners and a springboard for specialists who wish to continue their study in more detail.
This book serves as an introduction to the continuum mechanics and mathematical modeling of complex fluids in living systems. The form and function of living systems are intimately tied to the nature of surrounding fluid environments, which commonly exhibit nonlinear and history dependent responses to forces and displacements. With ever-increasing capabilities in the visualization and manipulation of biological systems, research on the fundamental phenomena, models, measurements, and analysis of complex fluids has taken a number of exciting directions. In this book, many of the world’s foremost experts explore key topics such as: Macro- and micro-rheological techniques for measuring the material properties of complex biofluids and the subtleties of data interpretation Experimental observations and rheology of complex biological materials, including mucus, cell membranes, the cytoskeleton, and blood The motility of microorganisms in complex fluids and the dynamics of active suspensions Challenges and solutions in the numerical simulation of biologically relevant complex fluid flows This volume will be accessible to advanced undergraduate and beginning graduate students in engineering, mathematics, biology, and the physical sciences, but will appeal to anyone interested in the intricate and beautiful nature of complex fluids in the context of living systems.
The living organisms and systems possess extraordinary properties of programmed development, differentiation, growth, response, movement, duplication of key molecules and in m any cases higher mental functions. But the organisms are physical objects so they must follow laws of physics yet they do not seem to obey them. Physicists cannot easily persuade themselves to accept this as finally true. Non-living objects are governed by these laws of physics and they can explain these properties. However, in the living systems too phenomena encountered like coupled non-linear interactions, manybody effects, cooperativity, coherence, phase transitions, reversible metastable states are being understood better with the aid of powerful theoretical and experimental techniques and hope is raised that these may let us understand the mysteriousness of life. Contributors to this volume are a small fraction of rapidly growing scientific opinion that these aspects of living bodies are to be expected in a hitherto inadequately suspected state of matter which is in the main directed by these physical properties pushed almost to limit. This state of matter, the living matter, deserves to be called The Living State. Mishra proposes that given hydrogenic orbitals, atoms showing easy hybridisability and multiple valances, molecules with low-lying electronic levels, "loosestructure", and a metabolic pump in thermodynamically open system, various fundamental properties of living state can emerge automatically. Structurally these are all known to be present.
This book, first published in 2005, is a discussion for advanced physics students of how to use physics to model biological systems.