Download Free Theoretical Kinematics Book in PDF and EPUB Free Download. You can read online Theoretical Kinematics and write the review.

Classic, comprehensive treatment covers Euclidean displacements; instantaneous kinematics; two-position, three-position, four-and-more position theory; special motions; multiparameter motions; kinematics in other geometries; and special mathematical methods.
Introduction to Theoretical Kinematics provides a uniform presentation of the mathematical foundations required for studying the movement of a kinematic chain that makes up robot arms, mechanical hands, walking machines, and similar mechanisms. It is a concise and readable introduction that takes a more modern approach than other kinematics texts and introduces several useful derivations that are new to the literature. The author employs a unique format, highlighting the similarity of the mathematical results for planar, spherical, and spatial cases by studying them all in each chapter rather than as separate topics. For the first time, he applies to kinematic theory two tools of modern mathematics - the theory of multivectors and the theory of Clifford algebras - that serve to clarify the seemingly arbitrary nature of the construction of screws and dual quaternions. The first two chapters formulate the matrices that represent planar, spherical, and spatial displacements and examine a continuous set of displacements which define a continuous movement of a body, introducing the "tangent operator." Chapter 3 focuses on the tangent operators of spatial motion as they are reassembled into six-dimensional vectors or screws, placing these in the modern setting of multivector algebra. Clifford algebras are used in chapter 4 to unify the construction of various hypercomplex "quaternion" numbers. Chapter 5 presents the elementary formulas that compute the degrees of freedom or mobility, of kinematic chains, and chapter 6 defines the structure equations of these chains in terms of matrix transformations. The last chapter computes the quaternion form of the structure equations for ten specific mechanisms. These equations define parameterized manifolds in the Clifford algebras, or "image spaces," associated with planar, spherical, and spatial displacements. McCarthy reveals a particularly interesting result by showing that these parameters can be mathematically manipulated to yield hyperboloids or intersections of hyperboloids.
The book deals with kinematics of mechanisms. It focuses on a solid theoretical foundation and on mathematical methods applicable to the solution of problems of very diverse nature. Applications are demonstrated in a large number of fully worked-out problems. In kinematics a wide variety of mathematical tools is applicable. In this book, wherever possible vector equations are formulated instead of lengthy scalar coordinate equations. The principle of transference is applied to problems of very diverse nature. 15 chapters of the book are devoted to spatial kinematics and three chapters to planar kinematics. In Chapt. 19 nonlinear dynamics equations of motion are formulated for general spatial mechanisms. Nearly one half of the book is dealing with position theory and the other half with motion. The book is intended for use as reference book for researchers and as textbook in advanced courses on kinematics of mechanisms.
A rigorous analysis and description of general motion in mechanical systems, which includes over 400 figures illustrating every concept, and a large collection of useful exercises. Ideal for students studying mechanical engineering, and as a reference for graduate students and researchers.
The second edition of this book would not have been possible without the comments and suggestions from students, especially those at Columbia University. Many of the new topics introduced here are a direct result of student feedback that helped refine and clarify the material. The intention of this book was to develop material that the author would have liked to have had available as a student. Theory of Applied Robotics: Kinematics, Dynamics, and Control (2nd Edition) explains robotics concepts in detail, concentrating on their practical use. Related theorems and formal proofs are provided, as are real-life applications. The second edition includes updated and expanded exercise sets and problems. New coverage includes: components and mechanisms of a robotic system with actuators, sensors and controllers, along with updated and expanded material on kinematics. New coverage is also provided in sensing and control including position sensors, speed sensors and acceleration sensors. Students, researchers, and practicing engineers alike will appreciate this user-friendly presentation of a wealth of robotics topics, most notably orientation, velocity, and forward kinematics.
A study of the kinematics and design of planar mechanisms. It introduces fundamental concepts of instantaneous planar kinematics; deals with dimensional synthesis, or design, of planar linkages; and describes the harmonic analysis of motion and kinetic energy in planar four-link mechanisms.
A master teacher presents the ultimate introduction to classical mechanics for people who are serious about learning physics "Beautifully clear explanations of famously 'difficult' things," -- Wall Street Journal If you ever regretted not taking physics in college -- or simply want to know how to think like a physicist -- this is the book for you. In this bestselling introduction to classical mechanics, physicist Leonard Susskind and hacker-scientist George Hrabovsky offer a first course in physics and associated math for the ardent amateur. Challenging, lucid, and concise, The Theoretical Minimum provides a tool kit for amateur scientists to learn physics at their own pace.
Today many important directions of research are being pursued more or less independently of each other. These are, for instance, strings and mem branes, induced gravity, embedding of spacetime into a higher dimensional space, the brane world scenario, the quantum theory in curved spaces, Fock Schwinger proper time formalism, parametrized relativistic quantum the ory, quantum gravity, wormholes and the problem of “time machines”, spin and supersymmetry, geometric calculus based on Clifford algebra, various interpretations of quantum mechanics including the Everett interpretation, and the recent important approach known as “decoherence”. A big problem, as I see it, is that various people thoroughly investigate their narrow field without being aware of certain very close relations to other fields of research. What we need now is not only to see the trees but also the forest. In the present book I intend to do just that: to carry out a first approximation to a synthesis of the related fundamental theories of physics. I sincerely hope that such a book will be useful to physicists. From a certain viewpoint the book could be considered as a course in the oretical physics in which the foundations of all those relevant fundamental theories and concepts are attempted to be thoroughly reviewed. Unsolved problems and paradoxes are pointed out. I show that most of those ap proaches have a common basis in the theory of unconstrained membranes. The very interesting and important concept of membrane space, the tensor calculus in and functional transformations in are discussed.
This two-part text fills what has often been a void in the first-year graduate physics curriculum. Through its examination of particles and continua, it supplies a lucid and self-contained account of classical mechanics — which in turn provides a natural framework for introducing many of the advanced mathematical concepts in physics. The text opens with Newton's laws of motion and systematically develops the dynamics of classical particles, with chapters on basic principles, rotating coordinate systems, lagrangian formalism, small oscillations, dynamics of rigid bodies, and hamiltonian formalism, including a brief discussion of the transition to quantum mechanics. This part of the book also considers examples of the limiting behavior of many particles, facilitating the eventual transition to a continuous medium. The second part deals with classical continua, including chapters on string membranes, sound waves, surface waves on nonviscous fluids, heat conduction, viscous fluids, and elastic media. Each of these self-contained chapters provides the relevant physical background and develops the appropriate mathematical techniques, and problems of varying difficulty appear throughout the text.