Download Free The Worlds Smallest Prime Number Book in PDF and EPUB Free Download. You can read online The Worlds Smallest Prime Number and write the review.

This book contains the World's Smallest Prime Number. Nothing more, nothing less. Please do not buy it.
A fascinating journey into the mind-bending world of prime numbers Cicadas of the genus Magicicada appear once every 7, 13, or 17 years. Is it just a coincidence that these are all prime numbers? How do twin primes differ from cousin primes, and what on earth (or in the mind of a mathematician) could be sexy about prime numbers? What did Albert Wilansky find so fascinating about his brother-in-law's phone number? Mathematicians have been asking questions about prime numbers for more than twenty-five centuries, and every answer seems to generate a new rash of questions. In Prime Numbers: The Most Mysterious Figures in Math, you'll meet the world's most gifted mathematicians, from Pythagoras and Euclid to Fermat, Gauss, and Erd?o?s, and you'll discover a host of unique insights and inventive conjectures that have both enlarged our understanding and deepened the mystique of prime numbers. This comprehensive, A-to-Z guide covers everything you ever wanted to know--and much more that you never suspected--about prime numbers, including: * The unproven Riemann hypothesis and the power of the zeta function * The "Primes is in P" algorithm * The sieve of Eratosthenes of Cyrene * Fermat and Fibonacci numbers * The Great Internet Mersenne Prime Search * And much, much more
Like a hunter who sees 'a bit of blood' on the trail, that's how Princeton mathematician Peter Sarnak describes the feeling of chasing an idea that seems to have a chance of success. If this is so, then the jungle of abstractions that is mathematics is full of frenzied hunters these days. They are out stalking big game: the resolution of 'The Riemann Hypothesis', seems to be in their sights. The Riemann Hypothesis is about the prime numbers, the fundamental numerical elements. Stated in 1859 by Professor Bernhard Riemann, it proposes a simple law which Riemann believed a 'very likely' explanation for the way in which the primes are distributed among the whole numbers, indivisible stars scattered without end throughout a boundless numerical universe. Just eight years later, at the tender age of thirty-nine Riemann would be dead from tuberculosis, cheated of the opportunity to settle his conjecture. For over a century, the Riemann Hypothesis has stumped the greatest of mathematical minds, but these days frustration has begun to give way to excitement. This unassuming comment is revealing astounding connections among nuclear physics, chaos and number theory, creating a frenzy of intellectual excitement amplified by the recent promise of a one million dollar bounty. The story of the quest to settle the Riemann Hypothesis is one of scientific exploration. It is peopled with solitary hermits and gregarious cheerleaders, cool calculators and wild-eyed visionaries, Nobel Prize-winners and Fields Medalists. To delve into the Riemann Hypothesis is to gain a window into the world of modern mathematics and the nature of mathematics research. Stalking the Riemann Hypothesis will open wide this window so that all may gaze through it in amazement.
A small revolution is remaking the world. The only problem is, we can’t see it. This book uses dazzling images and evocative descriptions to reveal the virtually invisible realities and possibilities of nanoscience. An introduction to the science and technology of small things, No Small Matter explains science on the nanoscale. Authors Felice C. Frankel and George M. Whitesides offer an overview of recent scientific advances that have given us our ever-shrinking microtechnology—for instance, an information processor connected by wires only 1,000 atoms wide. They describe the new methods used to study nanostructures, suggest ways of understanding their often bizarre behavior, and outline their uses in technology. This book explains the various means of making nanostructures and speculates about their importance for critical developments in information processing, computation, biomedicine, and other areas. No Small Matter considers both the benefits and the risks of nano/microtechnology—from the potential of quantum computers and single-molecule genomic sequencers to the concerns about self-replicating nanosystems. By making the practical and probable realities of nanoscience as comprehensible and clear as possible, the book provides a unique vision of work at the very boundaries of modern science.
Emily is unhappy with her size until a new girl in class helps her see that being short can have its advantages.
Logics of Worlds is the sequel to Alain Badiou's masterpiece, Being and Event. Tackling the questions that had been left open by Being and Event, and answering many of his critics in the process, Badiou supplements his pioneering treatment of multiple being with a daring and complex theory of the worlds in which truths and subjects make their mark - what he calls a materialist dialectic. Drawing on his most ambitious philosophical predecessors - Leibniz, Kant, Hegel, Kierkegaard, Lacan, Deleuze – Badiou ends this important later work with an impassioned call to 'live for an Idea'.
An accessible look at the hottest topic in physics and the experiments that will transform our understanding of the universe The biggest news in science today is the Large Hadron Collider, the world's largest and most powerful particle-smasher, and the anticipation of finally discovering the Higgs boson particle. But what is the Higgs boson and why is it often referred to as the God Particle? Why are the Higgs and the LHC so important? Getting a handle on the science behind the LHC can be difficult for anyone without an advanced degree in particle physics, but you don't need to go back to school to learn about it. In Collider, award-winning physicist Paul Halpern provides you with the tools you need to understand what the LHC is and what it hopes to discover. Comprehensive, accessible guide to the theory, history, and science behind experimental high-energy physics Explains why particle physics could well be on the verge of some of its greatest breakthroughs, changing what we think we know about quarks, string theory, dark matter, dark energy, and the fundamentals of modern physics Tells you why the theoretical Higgs boson is often referred to as the God particle and how its discovery could change our understanding of the universe Clearly explains why fears that the LHC could create a miniature black hole that could swallow up the Earth amount to a tempest in a very tiny teapot "Best of 2009 Sci-Tech Books (Physics)"-Library Journal "Halpern makes the search for mysterious particles pertinent and exciting by explaining clearly what we don't know about the universe, and offering a hopeful outlook for future research."-Publishers Weekly Includes a new author preface, "The Fate of the Large Hadron Collider and the Future of High-Energy Physics" The world will not come to an end any time soon, but we may learn a lot more about it in the blink of an eye. Read Collider and find out what, when, and how.
Bridges the gap between theoretical and computational aspects of prime numbers Exercise sections are a goldmine of interesting examples, pointers to the literature and potential research projects Authors are well-known and highly-regarded in the field
Sandifer has been studying Euler for decades and is one of the world’s leading experts on his work. This volume is the second collection of Sandifer’s “How Euler Did It” columns. Each is a jewel of historical and mathematical exposition. The sum total of years of work and study of the most prolific mathematician of history, this volume will leave you marveling at Euler’s clever inventiveness and Sandifer’s wonderful ability to explicate and put it all in context.
This book contains 1 million digits of pi on 371 pages (Decimal Places from 1 to 1,000,000) and is the perfect gift for everyone who loves math, especially on Pi day and for birthdays!ESTIMATED NUMBERS PER PAGE: 2714NUMBER OF PAGES: 371 pagesPAPER / TRIM SIZE: 6" x 9" (15,24cm x 22,86 cm)PAPER COLOR: White paperCOVER: Softcover paperback - glossy finishBOOK BINDING: Perfect bound