Download Free The Visual System Of Fish Book in PDF and EPUB Free Download. You can read online The Visual System Of Fish and write the review.

A question often asked of those of us who work in the seemingly esoteric field of fish vision is, why? To some of us the answer seems obvious - how many other visual scientists get to dive in a tropical lagoon in the name of science and then are able to eat their subjects for dinner? However, there are better, or at least scientifically more acceptable, reasons for working on the visual system of fish. First, in terms of numbers, fish are by far the most important of all vertebrate classes, probably accounting for over half (c. 22 000 species) of all recognized vertebrate species (Nelson, 1984). Furthermore, many of these are of commercial importance. Secondly, if one of the research aims is to understand the human visual system, animals such as fish can tell us a great deal, since in many ways their visual systems, and specifically their eyes, are similar to our own. This is fortunate, since there are several techniques, such as intracellular retinal recording, which are vital to our understanding of the visual process, that cannot be performed routinely on primates. The cold blooded fish, on the other hand, is an ideal subject for such studies and much of what we know about, for example, the fundamentals of information processing in the retina is based on work carried out on fish (e. g. Svaetichin, 1953).
Fish comprise more than 50% of all living vertebrates and are found in a wide range of highly diverse habitats like the deep sea, the shoreline, tide pools, tropical streams and sweetwater ponds. During evolution, the senses of fish have adapted to the physical conditions of the environment in which different species live. As a result, the senses of fish exhibit a remarkable diversity that allows different species to deal with the physical constraints imposed by their habitat. In addition, fish have evolved several `new' sensory systems that are unique to the aquatic environment. In this book, examples of adaptation and refinement are given for six sensory systems: The visual system, The auditory system, The olfactory system, The mechanosensory lateral line system, The taste system, The electrosensory system. In each case, the environmental conditions under which a particular group of fish lives are analyzed. This is followed by a description of morphology and physiology of the sensory system and by an evaluation of its perceptional capabilities. Finally, the sensory adaptations to the particular conditions that prevail in the habitat of a species are highlighted. The various examples from different groups of fish presented in this book demonstrate the impressive capability of fish sensory systems to effectively overcome physical problems imposed by the environment.
This book is about the behaviour of teleosts, a well-defined, highly successful, taxonomic group of vertebrate animals sharing a common body plan and forming the vast majority of living bony fishes. There are weH over 22000 living species of teleosts, including nearly all those of importance in com mercial fisheries and aquaculture. Teleosts are represented injust about every conceivable aquatic environment from temporary desert pools to the deep ocean, from soda lakes to sub-zero Antarctic waters. Behaviour is the primary interface between these effective survival machines and their environment: behavioural plasticity is one of the keys to their success. The study of animal behaviour has undergone revolutionary changes in the past decade under the dual impact of behavioural ecology and sociobiology. The modern body of theory provides quantitatively testable and experi mentaHy accessible hypotheses. Much current work in animal behaviour has concentrated on birds and mammals, animals with ostensibly more complex structure, physiology and behavioural capacity, but there is a growing body of information about the behaviour of fishes. There is now increasing awareness that the same ecological and evolutionary rules govern teleost fish, and that their behaviour is not just a simplified version of that seen in birds and mammals. The details of fish behaviour intimately reflect unique and efficient adaptations to their three-dimensional aquatic environment.
The visual world of animals is highly diverse and often very different from that of humans. This book provides an extensive review of the latest behavioral and neurobiological research on animal vision, detailing fascinating species similarities and differences in visual processing.
This book is the only account of what honeybees actually see. Bees detect some visual features such as edges and colours, but there is no sign that they reconstruct patterns or put together features to form objects. Bees detect motion but have no perception of what it is that moves, and certainly they do not recognize "things" by their shapes. Yet they clearly see well enough to fly and find food with a minute brain. Bee vision is therefore relevant to the construction of simple artificial visual systems, for example for mobile robots. The surprising conclusion is that bee vision is adapted to the recognition of places, not things. In this volume, Adrian Horridge also sets out the curious and contentious history of how bee vision came to be understood, with an account of a century of neglect of old experimental results, errors of interpretation, sharp disagreements, and failures of the scientific method. The design of the experiments and the methods of making inferences from observations are also critically examined, with the conclusion that scientists are often hesitant, imperfect and misleading, ignore the work of others, and fail to consider alternative explanations. The erratic path to understanding makes interesting reading for anyone with an interest in the workings of science but particularly those researching insect vision and invertebrate sensory systems.
A counting book depicting the colorful fish a child might see if he turned into a fish himself.
Research on aquatic sensory processing -- the way animals see, hear, smell, taste, feel, and electrically and magnetically sense their environment -- has advanced a great deal over the last fifteen years. This book discusses the most recent and important themes that have emerged from research in the areas of neurobiology and sensory physiology. The layout of the book is arranged by function or task, rather than by a description of each sensory modality in turn. Part I, "Navigation and Communication," chiefly examines long-range sensory tasks, while "Finding Food and Other Localized Sources" (Part II) scales down to concentrate on more close-range processing. Part III, "Coevolution of Signal and Sense," describes the strong linkages between the physical parameters of the aquatic realm and the sensory receptors. Organisms living in light-limited environments have received a lot of recent attention, so Part IV gives special focus to visual adaptations in the deep sea. The final Part V, "Central Coordination and Evolution of Sensory Inputs," describes aspects of how signals are processed and filtered in the central nervous system. This book will be essential reading for all undergraduate and graduate students interested in aquatic biological sciences as well as for any researcher in sensory systems.
This volume constitutes a series of invited chapters based on presentations given at an International Conference on the Sensory Biology of Aquatic Animals held June 24-28, 1985 at the Mote Marine Laboratory in Sarasota, Florida. The immediate purpose of the conference was to spark an exchange of ideas, concepts, and techniques among investigators concerned with the different sensory modalities employed by a wide variety of animal species in extracting information from the aquatic environment. By necessity, most investigators of sensory biology are specialists in one sensory system: different stimulus modalities require different methods of stimulus control and, generally, different animal models. Yet, it is clear that all sensory systems have principles in common, such as stimulus filtering by peripheral structures, tuning of receptor cells, signal-to-noise ratios, adaption and disadaptation, and effective dynamic range. Other features, such as hormonal and efferent neural control, circadian reorganization, and receptor recycling are known in some and not in other senses. The conference afforded an increased awareness of new discoveries in other sensory systems that has effectively inspired a fresh look by the various participants at their own area of specialization to see whether or not similar principles apply. This inspiration was found not only in theoretical issues, but equally in techniques and methods of approach. The myopy of sensory specialization was broken in one unexpected way by showing limitations of individual sense organs and their integration within each organism. For instance, studying vision, one generally chooses a visual animal as a model.
The following are the proceedings of the Third International Workshop on Perception held in Pavia, Italy, on September 27-30, 1993, under the auspices of four institutions: the Group of Cybernetic and Biophysics (GNCB)s of the National Research Council (CNR), the Italian Association for Artificial Intelligence (AI * IA), the Italian Association of Psychology (AlP), and the Italian Chapter of the International Association for Pattern Recognition (IAPR). The theme of this third workshop was: "Human and Machine Vision: Analogies and Divergencies." A wide spectrum of topics was covered, ranging from neurophysiology, to computer architecture, to psychology, to image understanding, etc. For this reason the structure of this workshop was quite different from those of the first two held in Parma (1991), and Trieste (1992). This time the workshop was composed of just eight modules, each one consisting of two invited lectures (dealing with vision in nature and machines, respectively) and a common panel discussion (including the two lecturers and three invited panellists).